...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Optimized simultaneous transverse and longitudinal focusing of intense ion beam pulses for warm dense matter applications
【24h】

Optimized simultaneous transverse and longitudinal focusing of intense ion beam pulses for warm dense matter applications

机译:优化的强离子束脉冲同时横向和纵向聚焦,适用于温暖的稠密物质应用

获取原文
获取原文并翻译 | 示例

摘要

Intense, space-charge-dominated ion beam pulses for warm dense matter and heavy ion fusion applications must undergo simultaneous transverse and longitudinal bunch compression in order to meet the requisite beam intensities desired at the target. The longitudinal compression of an ion bunch is achieved by imposing an initial axial velocity tilt on the drifting beam and subsequently neutralizing its space-charge and current in a drift region filled with high-density plasma. The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory has measured a sixty-fold longitudinal current compression of an intense ion beam with pulse duration of a few nanoseconds, in agreement with simulations and theory. A strong solenoid is modeled near the end of the drift region in order to transversely focus the beam to a sub-millimeter spot size coincident with the longitudinal focal plane. The charge and current neutralization provided by the background plasma is critical in determining the total achievable transverse and longitudinal compression of the beam pulse. Numerical simulations show that the current density of an NDCX ion beam can be compressed over a few meters by factors greater than 10~5 with peak beam density in excess of 10~(14) cm~(-3). The peak beam density sets a lower bound on the local plasma density required near the focal plane for optimal beam compression, since the simulations show stagnation of the compression when n_(beam) > n_(plasma). Beam-plasma interactions can also have a deleterious effect on the compression physics and lead to the formation of nonlinear wave excitations in the plasma. Simulations that optimize designs for the simultaneous transverse and longitudinal focusing of an NDCX ion beam for future warm dense matter experiments are discussed.
机译:对于温暖的重物质和重离子聚变应用,强烈的,以空间电荷为主的离子束脉冲必须同时经受横向和纵向束压缩,才能满足目标所需的必要束强度。离子束的纵向压缩是通过在漂移束上施加初始轴向速度倾斜并随后在充满高密度等离子体的漂移区内中和其空间电荷和电流来实现的。劳伦斯伯克利国家实验室的中和漂移压缩实验(NDCX)已测量了强离子束的六十倍纵向电流压缩,脉冲持续时间为几纳秒,与模拟和理论相符。在漂移区域的末端附近对一个强螺线管进行建模,以便将光束横向聚焦到与纵向焦平面重合的亚毫米光斑尺寸。背景等离子体提供的电荷和电流中和对于确定束脉冲可实现的总横向和纵向压缩至关重要。数值模拟表明,NDCX离子束的电流密度可以通过大于10〜5的因子在几米的范围内压缩,峰值束密度超过10〜(14)cm〜(-3)。峰值束密度在焦平面附近为最佳束压缩所需的局部等离子体密度上设置了下限,因为模拟显示当n_(beam)> n_(plasma)时压缩停滞。束与等离子体的相互作用也可能对压缩物理学产生有害影响,并导致等离子体中非线性波激发的形成。讨论了优化设计的模拟,以同时进行NDCX离子束的横向和纵向聚焦,以用于将来的热致密物质实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号