...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >R&D in photosensors and data acquisition systems for a new generation of Cosmic Ray Cherenkov and Fluorescence Imaging focal planes
【24h】

R&D in photosensors and data acquisition systems for a new generation of Cosmic Ray Cherenkov and Fluorescence Imaging focal planes

机译:新一代宇宙射线切伦科夫和荧光成像焦平面的光传感器和数据采集系统的研发

获取原文
获取原文并翻译 | 示例

摘要

In this work we present the design, first prototypes and experimental R&D activities on the development of novel imaging cameras for Imaging Atmospheric Cherenkov and Fluorescence Telescopes. The baseline solution for the focal plane is based on a photosensor architecture instrumented with Silicon Photomultipliers (SiPMs). To decrease the trigger threshold and improve the signal-to-noise ratio for low-energy events, the Photon Counting technique is used. For very bright events the conventional Charge Integration approach is retained. The large number of channels requires a compact and modular design with minimal cabling and distance between the photosensors and the frontend. Other design requirements are an efficient light concentration system treated with an anti-reflective coating, a liquid cooling system able to keep the SiPMs at a temperature of -20 ℃ to -10 ℃, a low-power frontend electronics down to 1 kW/m~2 and an easy field maintenance, high reliability data acquisition and trigger system. In the baseline design, the data acquisition system is partitioned in on-board frontend and off-detector high-level trigger electronics. Extensive use of mixed-signal ASICs and low-power FPGAs for early data reduction (Level 1 trigger), compatible with a liquid cooling sub-system for temperature control is adopted. The off-detector data acquisition and higher trigger (Level 2 and Level 3) architecture is based on the VME64X standard. The boards are connected by multi-Gbps optical links to the focal plane camera. Trigger primitives are sent asynchronously to the trigger boards via data links running at their own clocks. Data and slow-control data streams are also sent over the same links with the parallel VME64X backplane kept for trigger board configuration, slow-control and final data readout Each 8-slot 6U crate can process up to about 3.6 x 104 SiPM channels.
机译:在这项工作中,我们介绍了用于开发大气成像Cherenkov和荧光望远镜的新型成像相机的设计,第一批原型和实验性R&D活动。焦平面的基线解决方案基于装有硅光电倍增管(SiPM)的光电传感器架构。为了降低触发阈值并提高低能量事件的信噪比,使用了光子计数技术。对于非常明亮的事件,保留了常规的电荷积分方法。大量的通道需要紧凑的模块化设计,并且在光传感器和前端之间的布线和距离最小。其他设计要求是:使用抗反射涂层处理的高效聚光系统,能够将SiPM保持在-20℃至-10℃的温度的液体冷却系统,低功率前端电子设备低至1 kW / m 〜2以及易于现场维护,高可靠性的数据采集和触发系统。在基准设计中,数据采集系统被划分为板载前端和检测器外的高级触发电子设备。广泛使用混合信号ASIC和低功耗FPGA进行早期数据缩减(1级触发),并与用于温度控制的液冷子系统兼容。检测器外数据采集和更高触发(第2级和第3级)架构基于VME64X标准。这些板通过多Gbps光学链路连接到焦平面相机。触发原语通过以自己的时钟运行的数据链路异步发送到触发板。数据和慢速控制数据流也通过并行的VME64X背板通过相同的链路发送,用于触发板配置,慢速控制和最终数据读取每个8槽6U板条箱最多可处理约3.6 x 104 SiPM通道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号