首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities
【24h】

Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

机译:用于天然铀转化设施的安全监控的高分辨率伽马射线探测的灵敏度分析

获取原文
获取原文并翻译 | 示例
           

摘要

Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO_2(NO_3)_2) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the ~(235)U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires uncertainty «1 %. Accounting for material self-shielding properties, pipe thickness, and source-detector orientation is instrumental in determining the robustness of gamma-ray detection in the process monitoring of uranyl nitrate in NUCPs. Monte Carlo models and ray-tracing models were employed to determine the sensitivity of the detected 185.7 keV photon to self-shielding properties, pipe thickness, and source-detector geometry. Considering the implementation of the detection of 1 SQ, diversion of 1 SQ becomes essentially undetectable given the systematic uncertainty, in addition to considerations such as propagating uncertainties due to pipe offset/position, as well as minor variations in pipe thickness. Consequently, pipe thickness was the most sensitive variable in affecting full energy efficiency of the 185.7 keV signature peak with up to 8% variation in efficiency for ± 0.5 mm changes in Schedule 40 304L stainless steel piping. Furthermore, computation of the attenuation correction factor of the uranyl nitrate solution [CF(AT) (i.e. ε_(sample))] using Parker's method using with the approximation for the geometrical factor k≈π/4 was validated through experimental, Monte Carlo and ray-tracing calculations for a uranyl nitrate filled transfer pipe segment. Quantifying sensitivity in detector position, as well as voiding effects due to bubbly flow or laminar flow with an air gap in the Uranyl nitrate becomes increasingly important as considerations from (static) design-scale measurements translate into (dynamic) field operations tests.
机译:根据国际原子能机构(IAEA)最新通告和政策文件提出的政策,当存在任何适用于同位素富集或燃料制造的纯净铀水溶液或氧化铀时,便会实施保障措施。根据国际原子能机构第18号政策文件,对受保障的核材料的起点进行了重新解释,建议提纯的铀化合物应不迟于转换过程中的第一点接受保障程序。为了响应这一技术需求,在先前的工作中采用了模拟模型和实验测量方法的组合,以开发和验证天然铀转化工厂(NUCP)中的伽马射线无损分析监控系统。尤其是,退出溶剂萃取的硝酸铀酰(UO_2(NO_3)_2)溶液被确定为关键测量点(KMP)。评估了使用高分辨率伽马射线光谱仪的被动无损测定技术,以确定其可行性,以此作为在NUCP得出保障结论的技术手段,并且是否能够及时满足IAEA的1个重要数量(SQ)的检测要求。基于上述先前通过一系列稀释测量对检测器对各种浓度的硝酸铀酰的敏感性的验证工作,这项工作研究了检测器对硝酸铀酰的γ-射线特征的响应参数敏感性。检测系统的最大能量峰值效率取决于样品,几何形状,吸收率和固有效率参数。这些参数的扰动转化为硝酸铀酰中〜(235)U的185.7 keV峰面积的相应变化。所分析签名中的此类干扰会影响所得出的保障结论的质量或多功能性。鉴于NUCP中硝酸铀酰的潜在高通量,分析1 SQ材料的能力需要不确定性«1%。考虑材料的自我屏蔽性能,管道厚度和源探测器方向,有助于确定NUCP中硝酸铀酰过程监控中伽马射线探测的鲁棒性。采用蒙特卡洛模型和射线追踪模型确定检测到的185.7 keV光子对自屏蔽性能,管道厚度和源探测器几何形状的敏感性。考虑到实施1 SQ的检测,鉴于系统不确定性,除了考虑诸如由于管道偏移/位置引起的传播不确定性以及管道厚度的细微变化之类的因素之外,基本上无法检测到1 SQ的转向。因此,管道厚度是影响185.7 keV信号峰的全部能量效率的最敏感变量,在Schedule 40 304L不锈钢管道中,±0.5 mm的变化,效率变化高达8%。此外,通过实验,蒙特卡洛和蒙特卡罗等方法,验证了使用帕克方法并采用近似几何因子k≈π/ 4的硝酸铀酰溶液[CF(AT)(即ε_(样品))]的衰减校正因子的计算。硝酸铀酰填充的输送管段的射线追踪计算。随着(静态)设计规模测量的考虑转化为(动态)现场操作测试,量化检测器位置的灵敏度以及由于硝酸铀酰中的气泡导致的气泡流或层流引起的空隙效应变得越来越重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号