首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >GAGG-MPPC detector with optimized light guide thickness for combined Compton-PET applications
【24h】

GAGG-MPPC detector with optimized light guide thickness for combined Compton-PET applications

机译:GAGG-MPPC检测器具有优化的光导厚度,用于组合COPON-PET应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Silicon photomultipliers (SiPMs) have become a standard photodetector to be coupled with scintillators in PET, but the SiPM saturation is limiting the performance achievable with the detectors employed, in particular the high energy resolution which is necessary for whole gamma imaging (WGI). The concept of WGI combines PET and a Compton camera by inserting a scatterer detector ring into a PET ring. Not only typical SPECT radionuclides such as ~(99m)Tc (140 keV), but also unusual positron emitters such as ~(89)Zr (909 keV) and ~(44)Sc (1157 keV) can be imaging targets. For better spatial resolution in Compton imaging, the scatterer detector requires better energy resolution for a wide range of deposited energies. The use of bright scintillators such as GAGG is essential, but the SiPM saturation may prevent full use being made for such bright scintillators. We expected that inserting a thick light guide between GAGG and SiPM could spread scintillation photons to surrounding SiPMs and eliminate the saturation effect. On the other hand, the thicker the light guide becomes, the greater the number of scintillation photons that may be absorbed. Therefore, in this paper, we investigated the relationship between the light guide thickness and the energy resolution. A 22 × 22 array of GAGG crystals (0.9 × 0.9 × 6 mm~3 each) was optically coupled to the 8 × 8 multi-pixel photon-counter (MPPC) array (3×3 mm~2 pixel, 50 × 50 μm~2 sub-pixel) via a light guide, for which thickness was changed from 0 (i.e., without the light guide) to 8 mm. Using point sources with different energies (~(133)Ba, ~(22)Na and ~(137)Cs), we compared crystal identification performance, linearity of the output signal and energy resolution. Increasing the light guide thickness gradually degraded crystal identification performance but improved linearity of the output signals. Energy resolution at 81 keV constantly deteriorated with increasing light guide thickness. Energy resolutions at 356, 511 and 662 keV were improved with increasing light guide thickness to a certain value after which they deteriorated; the thicknesses at which deterioration started were 2.0 mm, 3.0 mm and 4.0 mm, respectively, for the energy resolutions at 356, 511 and 662 keV. We found that the optimum light guide thickness for the target energy range was 2.0 mm, and for this thickness, energy resolution values were 22.0% at 81 keV, 7.6% at 356 keV, 8.3% at 511 keV and 8.2% at 662 keV.
机译:硅光电倍增器(SIPMS)已成为一种标准的光电探测器,用于与PET中的闪烁体偶联,但SIPM饱和度限制了所采用的检测器可实现的性能,特别是对于整个γ成像(WGi)所需的高能量分辨率。 WGI的概念将PET和康普顿相机插入PET环中来结合宠物和康普顿相机。不仅典型的SPECT放射性核素,如〜(99米)TC(140keV),而且也是不寻常的正电子发射器,如〜(89)ZR(909keV)和〜(44)SC(1157keV)可以是成像靶标。为了更好的康普顿成像中的空间分辨率,散射器检测器需要更好的能量分辨率,用于各种沉积的能量。使用如GAGG的明亮闪烁体是必不可少的,但SIPM饱和度可能会防止用于这种​​明亮的闪烁体的充分用途。我们期望在GAGG和SIPM之间插入厚的光导可以将闪烁的光子传播到周围SIPM并消除饱和效果。另一方面,光导变越厚,可以吸收的闪烁光子的数量越多。因此,在本文中,我们研究了光导厚度和能量分辨率之间的关系。 22×22阵列的GAGG晶体(0.9×0.9×6mm〜3)光学耦合到8×8多像素光子计数器(MPPC)阵列(3×3mm〜2像素,50×50μm 〜2子像素)通过光导,厚度从0(即,没有光导)改变为8mm。使用具有不同能量的点源(〜(133)Ba,〜(22)Na和〜(137)CS),我们比较了晶体识别性能,输出信号的线性和能量分辨率。增加光导厚度逐渐降低的晶体识别性能,而是改善了输出信号的线性。 81 keV的能量分辨率随着导光厚度的增加而常变劣化。在356,511和662keV下的能量分辨率随着它们劣化而增加的光导厚度增加到一定的值;劣化开始的厚度分别为2.0mm,3.0 mm和4.0mm,用于356,511和662 kev。我们发现,目标能量范围的最佳光导厚度为2.0mm,并且对于该厚度,能量分辨率在81keV下为22.0%,7.6%在356keV,8.3%,8.3%,8.2%在662 keV下为8.2%。

著录项

  • 来源
  • 作者单位

    National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) 4-9-1 Anagawa Inage-ku Chiba 263-8555 Japan;

    National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) 4-9-1 Anagawa Inage-ku Chiba 263-8555 Japan;

    National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) 4-9-1 Anagawa Inage-ku Chiba 263-8555 Japan;

    National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) 4-9-1 Anagawa Inage-ku Chiba 263-8555 Japan;

    C&A Corporation 6-6-10 Aoba Aramaki Sendai 980-8579 Japan Institute for Materials Research (IMR) Tohoku University 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan;

    C&A Corporation 6-6-10 Aoba Aramaki Sendai 980-8579 Japan Institute for Materials Research (IMR) Tohoku University 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan;

    National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) 4-9-1 Anagawa Inage-ku Chiba 263-8555 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Whole gamma imaging; Positron emission tomography; Compton camera; Silicon photomultiplier (SiPM); Light guide; Energy resolution;

    机译:整个伽玛成像;正电子发射断层扫描;康普顿相机;硅光电倍增管(SIPM);光导;能量分辨率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号