首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >Performance evaluation of GAGG(Ce)/LFS scintillator + MPPC array readout with ASIC
【24h】

Performance evaluation of GAGG(Ce)/LFS scintillator + MPPC array readout with ASIC

机译:GAGG(CE)/ LFS闪烁体+ MPPC阵列读出用ASIC的性能评估

获取原文
获取原文并翻译 | 示例
           

摘要

We constructed a gamma-ray detector by combining two types of scintillator array detectors with an MPPC array and evaluated the spectral performance by reading out the signals from the MPPC with a low-power integrated circuit (ASIC) manufactured by IDEAS in Norway. One of the two types of scintillators is a GAGG(Ce) (Ce-doped Gd_3Al_2Ga_3O_(12)) scintillator, and the other is an LFS scintillator. The scintillator array is 2.5 cm x 2.5 cm in size and is coated with BaSO_4-based white paint for GAGG(Ce) and an enhanced specular reflector (ESR) for LFS except for the side optically coupled to the MPPC. The spectra derived from the array are affected by the MPPC photon saturations and light leakage from the adjacent pixels, and we carefully corrected for both effects in our data analysis. The energy resolution of 662 keV at 20 °C is 6.10 ± 0.04% for the GAGG(Ce) scintillator array and 8.57 ± 0.15% for the LFS scintillator array, this is equivalent to the typical energy resolution found in the references. The energy resolution depends on the temperature: the energy resolution improves as the temperature decreases. We found that the contribution of thermal noise from the MPPCs to the energy resolution is negligible within the range of -20 to 40 °C, and the energy resolution is mainly determined by the light yield of the crystals.
机译:我们通过将两种类型的闪烁器阵列探测器组合使用MPPC阵列来构造伽马射线探测器,并通过用挪威的想法制造的低功率集成电路(ASIC)来评估光谱性能。两种类型的闪烁体之一是GAGG(CE)(CE掺杂GD_3AL_2GA_3O_(12))闪烁体,另一个是LFS闪烁体。闪烁体阵列的尺寸为2.5cm×2.5cm,涂有用于GAGG(CE)的Baso_4的白色涂料,以及用于LFS的增强镜面反射器(ESR),除了光学耦合到MPPC的侧面。来自阵列的光谱受到MPPC光子饱和和来自相邻像素的漏光的影响,并且我们仔细校正了我们的数据分析中的效果。对于LFS闪烁体阵列的GAGG(CE)闪烁体阵列的GAGG(CE)闪烁器阵列的662keV的能量分辨率为662keV为6.10±0.04%,这相当于参考文献中发现的典型能量分辨率。能量分辨率取决于温度:随着温度降低,能量分辨率可提高。我们发现,从MPPC到能量分辨率的热噪声的贡献可以忽略不计-20至40℃,并且能量分辨率主要由晶体的光产率决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号