首页> 外文期刊>Nuclear fusion >Tokamak-like confinement at a high beta and low toroidal field in the MST reversed field pinch
【24h】

Tokamak-like confinement at a high beta and low toroidal field in the MST reversed field pinch

机译:MST反向场收缩中高贝塔值和低环形场的托卡马克式限制

获取原文
获取原文并翻译 | 示例
       

摘要

Energy confinement comparable with tokamak quality is achieved in the Madison Symmetric Torus (MST) reversed field pinch (RFP) at a high beta and low toroidal magnetic field. Magnetic fluctuations normally present in the RFP are reduced via parallel current drive in the outer region of the plasma. In response, the electron temperature nearly triples and beta doubles. The confinement time increases ten-fold (to ~10 ms), which is comparable with L- and H-mode scaling values for a tokamak with the same plasma current, density, heating power, size and shape. Runaway electron confinement is evidenced by a 100-fold increase in hard x-ray bremsstrahlung. Fokker-Planck modelling of the x-ray energy spectrum reveals that the high energy electron diffusion is independent of the parallel velocity, uncharacteristic of magnetic transport and more like that for electrostatic turbulence. The high core electron temperature correlates strongly with a broadband reduction of resonant modes at mid-radius where the stochasticity is normally most intense. To extend profile control and add auxiliary heating, rf current drive and neutral beam heating are in development. Low power lower-hybrid and electron Bernstein wave injection experiments are underway. Dc current sustainment via ac helicity injection (sinusoidal inductive loop voltages) is also being tested. Low power neutral beam injection shows that fast ions are well-confined, even in the presence of relatively large magnetic fluctuations.
机译:在高β和低环形磁场下,麦迪逊对称圆环(MST)反向场收缩(RFP)可实现与托卡马克质量相当的能量限制。通常通过在等离子体外部区域中进行并行电流驱动,可以减少RFP中通常存在的磁波动。作为响应,电子温度几乎翻了三倍,β翻了一番。约束时间增加了十倍(至〜10 ms),这与具有相同等离子体电流,密度,加热功率,尺寸和形状的托卡马克的L和H模式缩放值相当。硬X射线致辐射增加了100倍,证明了电子失控。 Fokker-Planck对X射线能谱的建模表明,高能电子的扩散与平行速度,磁传输的非特征性无关,并且更类似于静电湍流。较高的核心电子温度与通常在随机性最强的中半径处谐振模的宽带减小密切相关。为了扩展轮廓控制并增加辅助加热,正在开发射频电流驱动和中性束加热。低功率低杂波和电子伯恩斯坦波注入实验正在进行中。还正在测试通过交流电注入(正弦感应环路电压)维持的直流电流。低功率中性束注入表明,即使存在较大的磁波动,快速离子也受到很好的限制。

著录项

  • 来源
    《Nuclear fusion》 |2003年第12期|p. 1684-1692|共9页
  • 作者单位

    University of Wisconsin-Madison, Madison, WI, USA;

    University of Wisconsin-Madison, Madison, WI, USA;

    University of Wisconsin-Madison, Madison, WI, USA;

    University of Wisconsin-Madison, Madison, WI, USA;

    University of Wisconsin-Madison, Madison, WI, USA;

    University of Wisconsin-Madison, Madison, WI, USA;

    University of Wisconsin-Madison, Madison, WI, USA;

    University of Wisconsin-Madison, Madison, WI, USA;

    University of Wisconsin-Madison, Madison, WI, USA;

    University of Wisconsin-Madison, Madison, WI, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子核物理学、高能物理学;
  • 关键词

  • 入库时间 2022-08-18 00:50:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号