首页> 外文期刊>Nuclear fusion >Balance of the stored energies sustained by the internal and edge transport barriers and effects of ELMs and L-H transitions in JT-60U
【24h】

Balance of the stored energies sustained by the internal and edge transport barriers and effects of ELMs and L-H transitions in JT-60U

机译:JT-60U内部和边缘传输壁垒以及ELM和L-H跃迁的影响所保持的储能平衡

获取原文
获取原文并翻译 | 示例
           

摘要

To understand key physics processes determining radial profiles of the kinetic plasma parameters in the advanced tokamak operation scenarios, correlations between the edge transport barrier (ETB) and the internal transport barrier (ITB) have been studied in the JT-60U tokamak device. It has been found that the edge pedestal poloidal beta, β_p-ped, increases almost linearly with the total poloidal beta, β_p-tot, over a wide range of the plasma current for type I ELMing H-mode plasmas, and this dependence becomes stronger with increasing triangularity. This dependence is not due to the profile stiffness, since the dependence is the same regardless of the existence of ITB. As the stored energy inside the ITB-foot radius (W_(ITB)) increases, the total thermal stored energy (W_(th) increases and then the pedestal stored energy (W_(ped)) increases. On the other hand, as W_(ped) increases, the ELM penetration expands more inwards and finally reaches the ITB-foot radius. At this situation, the ITB-foot radius cannot move outwards because of the erosion by ELMs. Then the fractions of W_(ITB)/ W_(th) and W_(ped)/ W_(th) become almost constant. It has also been found that the type I ELM expels/decreases the edge toroidal momentum larger than the edge ion thermal energy. The ELM penetration for the toroidal rotation tends to be deeper than that for the ion temperature and can exceed the ITB-foot radius. The ELM penetration is deeper for CO-rotating plasmas than CTR rotating plasmas. In both cases, the ELM penetration is deeper in the order of the toroidal rotation (V_t), the ion temperature (T_i) and then the electron temperature (T_e). The L-H transition also changes the V_t profile more significantly than the T_i profile. At the L-H transition, the pedestal Vt shifts into the CTR-direction deeply and suddenly without a change in 7], and then the pedestal V_t grows further together with a growth of the pedestal T_i in a slower timescale. Such changes in V_t by ELMs and L-H transitions may affect degradation/evolution of ITB s.
机译:为了了解在先进的托卡马克操作方案中确定动力学等离子体参数的径向轮廓的关键物理过程,已在JT-60U托卡马克装置中研究了边缘传输屏障(ETB)与内部传输屏障(ITB)之间的相关性。已经发现,对于I型ELMing H型等离子体,在很大的等离子体电流范围内,边缘基座极点ββ_p-ped几乎与总极点ββ_p-tot线性增加,并且这种依赖性变得更强随着三角形的增加。这种依赖性不是由于轮廓刚度引起的,因为无论ITB是否存在,其依赖性都是相同的。随着ITB英尺半径(W_(ITB))内存储能量的增加,总热量存储能量(W_(th)增大,然后基座存储能量(W_(ped))增大。 (ped)增加,ELM的穿透力向内扩展,最终达到ITB脚半径。在这种情况下,由于ELM的腐蚀,ITB脚半径无法向外移动,然后W_(ITB)/ W_( th)和W_(ped)/ W_(th)变得几乎恒定,还发现I型ELM驱使/减小了比边缘离子热能大的边缘环形动量。比离子温度要深,并且可以超过ITB英尺半径。CO旋转等离子体的ELM渗透要比CTR旋转等离子体的ELM渗透要深。在两种情况下,ELM的渗透都以环形旋转的顺序更深(V_t ),离子温度(T_i),然后是电子温度(T_e)。使V_t配置文件比T_i配置文件更生气。在L-H过渡时,基座Vt突然突然向CTR方向移动,没有变化[7],然后基座V_t随基座T_i的增长在更慢的时间范围内进一步增长。 ELM和L-H转换引起的V_t的这种变化可能影响ITB的退化/演化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号