首页> 外文期刊>Nuclear fusion >Extension of the ECRH operational space with O2 and X3 heating schemes to control tungsten accumulation in ASDEX Upgrade
【24h】

Extension of the ECRH operational space with O2 and X3 heating schemes to control tungsten accumulation in ASDEX Upgrade

机译:使用O2和X3加热方案扩展ECRH操作空间,以控制ASDEX升级中的钨积累

获取原文
获取原文并翻译 | 示例
       

摘要

ASDEX Upgrade has been operated with tungsten-coated plasma-facing components for several years. H-mode operation with good confinement has been demonstrated. Nevertheless, purely neutral beam injection-heated H-modes with reduced gas puff, moderate heating power or/and increased triangularity tend to accumulate tungsten, followed by a radiative collapse. Under these conditions, central electron heating with electron cyclotron resonance heating (ECRH), usually in X2 polarization, changes the impurity transport in the plasma centre, reducing the central tungsten concentration and, in many cases, stabilizing the plasma. In order to extend the applicability of central ECRH to a wider range of magnetic field and plasma current additional ECRH schemes with reduced single-pass absorption have been implemented: X3 heating allows us to reduce the magnetic field by 30%, such that the first H-modes with an ITER-like value of the safety factor of q_(95) = 3 could be run in the tungsten-coated device. O2 heating increases the cutoff density by a factor of 2 allowing higher currents and triangularities to be addressed. For both schemes, scenarios have been developed to cope with the associated reduced absorption. In the case of central X3 heating, the X2 resonance lies close to the pedestal top at the high-field side of the plasma, serving as a beam dump. For O2, holographic mirrors have been developed which guarantee a second pass through the plasma centre. The beam position on these reflectors is controlled by fast thermocouples. Stray-radiation protection has been implemented using sniffer probes.
机译:多年来,ASDEX升级版已与镀钨等离子表面组件一起使用。已经证明了具有良好限制的H模式操作。然而,纯粹的中性束注入加热的H型具有减少的气团,适度的加热功率或/和增加的三角形性,容易积聚钨,随后发生辐射塌陷。在这些条件下,通常采用X2极化的带有电子回旋共振加热(ECRH)的中央电子加热改变了等离子体中心的杂质传输,从而降低了中央钨的浓度,并在许多情况下稳定了等离子体。为了将中央ECRH的适用范围扩展到更大范围的磁场和等离子电流,已实施了其他具有减少单程吸收的ECRH方案:X3加热使我们可以将磁场降低30%,因此第一个H安全模式为q_(95)= 3的ITER值的I-模式可以在镀钨设备中运行。 O2加热将截止密度提高了2倍,可以解决更大的电流和三角形问题。对于这两种方案,已经开发了方案来应对相关的减少的吸收。在中央X3加热的情况下,X2共振位于等离子高场侧的基座顶部附近,用作光束收集器。对于O2,已经开发了全息镜,可确保第二次通过等离子体中心。这些反射镜上的光束位置由快速热电偶控制。杂散辐射防护已使用嗅探器实现。

著录项

  • 来源
    《Nuclear fusion》 |2011年第8期|p.14.1-14.10|共10页
  • 作者单位

    Institut fuer Plasmaforschung, Universitat Stuttgart, Stuttgart, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Institut fuer Plasmaforschung, Universitat Stuttgart, Stuttgart, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Institut fuer Plasmaforschung, Universitat Stuttgart, Stuttgart, Germany,Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Garching, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:44:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号