...
首页> 外文期刊>Nuclear fusion >Overview of physics results from the conclusive operation of the National Spherical Torus Experiment
【24h】

Overview of physics results from the conclusive operation of the National Spherical Torus Experiment

机译:国家球形圆环实验的结论性操作的物理学结果概述

获取原文
获取原文并翻译 | 示例
           

摘要

Research on the National Spherical Torus Experiment, NSTX, targets physics understanding needed for extrapolation to a steady-state ST Fusion Nuclear Science Facility, pilot plant, or DEMO. The unique ST operational space is leveraged to test physics theories for next-step tokamak operation, including ITER. Present research also examines implications for the coming device upgrade, NSTX-U. An energy confinement time, τ_E, scaling unified for varied wall conditions exhibits a strong improvement of B_Tτ_E with decreased electron collisionality, accentuated by lithium (Li) wall conditioning. This result is consistent with nonlinear microtearing simulations that match the experimental electron diffusivity quantitatively and predict reduced electron heat transport at lower collisionality. Beam-emission spectroscopy measurements in the steep gradient region of the pedestal indicate the poloidal correlation length of turbulence of about ten ion gyroradii increases at higher electron density gradient and lower T_i gradient, consistent with turbulence caused by trapped electron instabilities. Density fluctuations in the pedestal top region indicate ion-scale microturbulence compatible with ion temperature gradient and/or kinetic ballooning mode instabilities. Plasma characteristics change nearly continuously with increasing Li evaporation and edge localized modes (ELMs) stabilize due to edge density gradient alteration. Global mode stability studies show stabilizing resonant kinetic effects are enhanced at lower collisionality, but in stark contrast have almost no dependence on collisionality when the plasma is off-resonance. Combined resistive wall mode radial and poloidal field sensor feedback was used to control n = 1 perturbations and improve stability. The disruption probability due to unstable resistive wall modes (RWMs) was surprisingly reduced at very high β_N/ι_i > 10 consistent with low frequency magnetohydrodynamic spectroscopy measurements of mode stability. Greater instability seen at intermediate β_N is consistent with decreased kinetic RWM stabilization. A model-based RWM state-space controller produced long-pulse discharges exceeding β_N = 6.4 and β_N/ι_i = 13. Precursor analysis shows 96.3% of disruptions can be predicted with 10ms warning and a false positive rate of only 2.8%. Disruption halo currents rotate toroidally and can have significant toroidal asymmetry. Global kinks cause measured fast ion redistribution, with full-orbit calculations showing redistribution from the core outward and towards V_(li) / V = 1 where destabilizing compressional Alfven eigenmode resonances are expected. Applied 3D fields altered global Alfven eigenmode characteristics. High-harmonic fast-wave (HHFW) power couples to field lines across the entire width of the scrape-off layer, showing the importance of the inclusion of this phenomenon in designing future RF systems. The snowflake divertor configuration enhanced by radiative detachment showed large reductions in both steady-state and ELM heat fluxes (ELMing peak values down from 19 MW m~(-2) to less than 1.5 MW m~(-2)). Toroidal asymmetry of heat deposition was observed during ELMs or by 3D fields. The heating power required for accessing H-mode decreased by 30% as the triangularity was decreased by moving the X-point to larger radius, consistent with calculations of the dependence of E × B shear in the edge region on ion heat flux and X-point radius. Co-axial helicity injection reduced the inductive start-up flux, with plasmas ramped to 1 MA requiring 35% less inductive flux. Non-inductive current fraction (NICF) up to 65% is reached experimentally with neutral beam injection at plasma current I_p = 0.7 MA and between 70-100% with HHFW application at I_p = 0.3 MA. NSTX-U scenario development calculations project 100% NICF for a large range of 0.6 < I_p(MA) < 1.35.
机译:国家球形圆环实验NSTX的研究针对将物理状态外推到稳态ST聚变核科学设施,中试厂或DEMO所需的物理知识。独特的ST操作空间可用于测试物理理论以进行下一步托卡马克行动,包括ITER。目前的研究还探讨了即将到来的设备升级NSTX-U的含义。对于不同的壁条件,统一的能量约束时间τ_E缩放显示出B_Tτ_E的显着改善,并且电子碰撞性降低,这是由于锂(Li)壁调节所致。该结果与非线性微撕裂仿真相一致,该仿真定量地匹配了实验的电子扩散率,并预测了在较低碰撞性下电子传热减少。在基座的陡峭梯度区域中的束发射光谱测量表明,在较高的电子密度梯度和较低的T_i梯度下,约十个离子陀螺半径的湍流的倍数相关长度增加,这与由俘获的电子不稳定性引起的湍流一致。基座顶部区域的密度波动表明与离子温度梯度和/或动力学膨胀模式不稳定性兼容的离子级微湍流。等离子体特性随着Li蒸发量的增加而几乎连续变化,并且由于边缘密度梯度的变化,边缘局部模式(ELM)趋于稳定。全局模式稳定性研究表明,稳定的共振动力学效应在较低的碰撞性下会增强,但与之形成鲜明对比的是,当等离子体处于非共振状态时,几乎不依赖于碰撞性。组合的电阻壁模式径向和极向场传感器反馈用于控制n = 1扰动并提高稳定性。在极高的β_N/ι_i> 10时,与模式稳定性的低频磁流体动力学光谱测量相一致,由于不稳定的电阻壁模式(RWMs)而引起的破坏概率令人惊讶地降低了。在中间β_N处看到的更大的不稳定性与降低的动力学RWM稳定性相一致。基于模型的RWM状态空间控制器产生的长脉冲放电超过β_N= 6.4和β_N/ι_i=13。前体分析显示,在10ms的警告时间内可以预测到96.3%的干扰,而假阳性率仅为2.8%。破坏光晕电流呈环形旋转,并且可能具有明显的环形不对称性。整体扭结导致测得的快速离子重新分布,全轨道计算显示从核芯向外并朝着V_(li)/ V = 1的方向重新分布,其中预期会破坏稳定的Alfven本征模共振。应用的3D场改变了全局Alfven本征模式特征。高谐波快波(HHFW)功率耦合到刮除层整个宽度上的场线,这表明在设计未来的RF系统时,必须包含此现象。辐射分离增强的雪花偏滤器结构在稳态和ELM热通量上都有很大的降低(ELMing峰值从19 MW m〜(-2)降低到小于1.5 MW m〜(-2))。在ELM或3D场中观察到热沉积的环形不对称性。通过将X点移动到更大的半径来减小三角形性,进入H模式所需的热功率降低了30%,这与计算边缘区域中E×B剪切对离子热通量和X-点半径。同轴螺旋注入降低了感应启动通量,等离子体升至1 MA所需的感应通量减少了35%。在等离子电流I_p = 0.7 MA的情况下,通过中性束注入实验可达到高达65%的非感性电流分数(NICF),在I_p = 0.3 MA的情况下,使用HHFW达到70-100%。 NSTX-U场景开发计算预计在0.6 <I_p(MA)<1.35的大范围内达到100%NICF。

著录项

  • 来源
    《Nuclear fusion》 |2013年第10期|104007.1-104007.23|共23页
  • 作者单位

    Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号