首页> 外文期刊>Nuclear fusion >Internal amplitude, structure and identification of compressional and global Alfven eigenmodes in NSTX
【24h】

Internal amplitude, structure and identification of compressional and global Alfven eigenmodes in NSTX

机译:NSTX中压缩和全局Alfven本征模式的内部振幅,结构和识别

获取原文
获取原文并翻译 | 示例
       

摘要

Fast-ions (e.g. fusion alphas and neutral beam ions) will excite a wide range of instabilities in ITER and a Fusion Nuclear Science Facility device. Among the possible instabilities are high frequency Alfven eigenmodes (AEs) excited through Doppler-shifted cyclotron resonance with beam ions. High frequency AEs cause fast-ion transport, correlate with enhanced electron thermal transport and are postulated to contribute to ion heating. These high frequency modes have historically been identified as a mixture of compressional (CAE) and global (GAE) Alfven eigenmodes, but distinguishing between the CAEs and GAEs has sometimes proven difficult. Identification is essential for understanding the extent of their effect, since the two types of modes have very different effects on resonant particle orbits. The effect on plasma performance of high frequency AEs is investigated in NSTX, facilitated by a recently upgraded array of 16 fixed-frequency quadrature reflectometers. Detailed measurements of high frequency AE amplitude and eigenmode structure were obtained in a high power (6 MW), beam-heated H-mode plasma that is very similar to those in which high frequency AE activity is shown to correlate with enhanced electron thermal transport. These measurements, which extend from the plasma edge to deep in the core, can be used in modelling the effects of the modes on electron thermal transport. The observed modes are identified by comparison of their frequency and measured toroidal mode numbers with local Alfven dispersion relations. The modes identified as CAEs have higher frequencies (predominantly f >~ 600kHz) and smaller toroidal mode numbers (|n| ≤ 5) than the GAEs (predominantly f <~ 600kHz, n = - 6 to -8). Also, they are strongly core localized, in contrast with the GAEs, which also peak towards the plasma centre but have much broader radial extent.
机译:快离子(例如聚变α和中性束离子)将激发ITER和聚变核科学设施设备中的各种不稳定性。可能的不稳定性包括通过离子束的多普勒频移回旋加速器共振激发的高频Alfven本征模式(AE)。高频AE引起快速离子迁移,与增强的电子热迁移相关,并被认为有助于离子加热。从历史上看,这些高频模式被认为是压缩(CAE)和全局(GAE)Alfven本征模式的混合,但是有时很难区分CAE和GAE。识别对于理解其影响程度至关重要,因为两种模式对共振粒子轨道的影响非常不同。在NSTX中研究了对高频AE的等离子体性能的影响,这是由最近升级的16个固定频率正交反射仪阵列所促成的。在高功率(6 MW),束流加热的H型等离子体中获得了高频AE振幅和本征模结构的详细测量结果,该等离子体非常类似于高频AE活性与增强的电子热传递相关的那些。这些测量从等离子边缘延伸到核心深处,可用于模拟模式对电子热传输的影响。通过将它们的频率和测得的环形模式数与局部Alfven色散关系进行比较,可以确定观察到的模式。识别为CAE的模式具有比GAE更高的频率(主要是f>〜600kHz)和较小的环形模式编号(| n |≤5)(主要是f <〜600kHz,n =-6至-8)。而且,与GAEs相比,它们在核心处的位置很强,GAEs也向等离子体中心倾斜,但径向范围更广。

著录项

  • 来源
    《Nuclear fusion》 |2013年第4期|043017.1-043017.7|共7页
  • 作者单位

    Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA;

    Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA;

    Nova Photonics, Princeton, NJ 08543, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:43:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号