首页> 外文期刊>Nuclear fusion >Global and pedestal confinement in JET with a Be/W metallic wall
【24h】

Global and pedestal confinement in JET with a Be/W metallic wall

机译:带有Be / W金属墙的JET中的全局和基座限制

获取原文
获取原文并翻译 | 示例
       

摘要

Type Ⅰ ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those with the full carbon wall (JET-C). The pedestal density is similar but the pedestal temperature where type Ⅰ ELMs occur is reduced and below to the so-called critical type Ⅰ-type Ⅲ transition temperature reported in JET-C experiments. Furthermore, the confinement factor H_(98(y,2)) in type Ⅰ ELMy H-mode baseline plasmas is generally lower in JET-ILW compared to JET-C at low power fractions P_(loss)/P_(thr,08) < 2 (where P_(loss) is(P_(in)- dW/dt), and P_(thr,08) the L-H power threshold from Martin et al 2008 (J. Phys. Conf. Ser. 123 012033)). Higher power fractions have thus far not been achieved in the baseline plasmas. At P_(loss)/P_(thr,08) > 2, the confinement in JET-ILW hybrid plasmas is similar to that in JET-C. A reduction in pedestal pressure is the main reason for the reduced confinement in JET-ILW baseline ELMy H-mode plasmas where typically H_(98(y,2)) = 0.8 is obtained, compared to H_(98(y,2)) = 1.0 in JET-C. In JET-ILW hybrid plasmas a similarly reduced pedestal pressure is compensated by an increased peaking of the core pressure profile resulting in H_(98(y,2))≤1.25. The pedestal stability has significantly changed in high triangularity baseline plasmas where the confinement loss is also most apparent. Applying the same stability analysis for JET-C and JET-ILW, the measured pedestal in JET-ILW is stable with respect to the calculated peeling-ballooning stability limit and the ELM collapse time has increased to 2 ms from typically 200 μs in JET-C. This indicates that changes in the pedestal stability may have contributed to the reduced pedestal confinement in JET-ILW plasmas. A comparison of EPED1 pedestal pressure prediction with JET-ILW experimental data in over 500 JET-C and JET-ILW baseline and hybrid plasmas shows a good agreement with 0.8 < (measured P_(ped))/(predicted P_(ped),EPED) < 1.2, but that the role of triangularity is generally weaker in the JET-ILW experimental data than in the model predictions.
机译:类似于ITER的Be / W壁(JET-ILW)的JET中的Ⅰ型ELMy H模式操作通常比具有全碳壁(JET-C)的底压更低。基座密度相似,但是Ⅰ型ELM发生的基座温度降低了,并低于JET-C实验中报道的所谓的Ⅰ型临界Ⅲ型转变温度。此外,在低功率分数P_(loss)/ P_(thr,08)时,JET-ILW的Ⅰ型ELMy H型基线等离子体中的约束因子H_(98(y,2))通常比JET-C低<2(其中P_(loss)为(P_(in)-dW / dt),P_(thr,08)为Martin等人2008年发表的LH功率阈值(物理学会刊123 012033)。迄今为止,在基线等离子体中还没有实现更高的功率分数。当P_(loss)/ P_(thr,08)> 2时,JET-ILW混合血浆的限制与JET-C中的限制相似。基座压力的减小是JET-ILW基线ELMy H型等离子体限制空间减小的主要原因,与H_(98(y,2))相比,通常获得H_(98(y,2))= 0.8 = JET-C中的1.0。在JET-ILW混合等离子体中,通过降低核心压力曲线的峰值来补偿类似降低的基座压力,从而导致H_(98(y,2))≤1.25。在高三角形基准血浆中,底座的稳定性已发生显着变化,在该血浆中,限制损失也最为明显。对JET-C和JET-ILW应用相同的稳定性分析,相对于计算的剥离-膨胀稳定性极限,JET-ILW中测得的基座是稳定的,并且ELM崩溃时间从JET-IL中的典型200μs增加到了2 ms。 C。这表明,基座稳定性的变化可能有助于降低JET-ILW血浆中的基座限制。将EPED1基座压力预测值与500多个JET-C和JET-ILW基线和混合血浆中的JET-ILW实验数据进行比较,结果显示0.8≤(实测P_(ped))/(预测P_(ped),EPED )<1.2,但是JET-ILW实验数据中的三角形性通常比模型预测中的弱。

著录项

  • 来源
    《Nuclear fusion》 |2014年第4期|043001.1-043001.13|共13页
  • 作者单位

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    Division of Fusion Plasma Physics, Association EURATOM-VR , KTH, SE-10044 Stockholm, Sweden;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching, Germany;

    EURATOM/IPP ASCR-Association Prague, Czech Republic;

    Association Euratom-CEA, IRFM, F-13108 St-Paul-Lez-Durance, France;

    Association EURATOM/Forschungszentrum Juelich GmbH, 52425 Juelich, Germany;

    Associazione EURATOM -ENEA sulla Fusione, C.R. Frascati, Frascati, Italy;

    Associazione EURATOM -ENEA sulla Fusione, C.R. Frascati, Frascati, Italy;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching, Germany;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    Associazione EURATOM -ENEA sulla Fusione, C.R. Frascati, Frascati, Italy;

    Association EURATOM/AaltoUniversity 02015 Espoo, Finland;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching, Germany;

    Association Euratom-CEA, IRFM, F-13108 St-Paul-Lez-Durance, France;

    Department of Physics, University of York, Heslington, York, YO10 5DD, UK;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid, Spain;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching, Germany;

    Istituto di Fisica del Plasma 'P.Caldirola', Associazione Euratom-ENEA-CNR, Milano, Italy;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching, Germany;

    Instituto de Plasmas e Fusao Nuclear, Associacao EURATOM-IST, Lisboa, Portugal;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    Istituto di Fisica del Plasma 'P.Caldirola', Associazione Euratom-ENEA-CNR, Milano, Italy;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK;

    Association EURATOM/DIFFER, Rijnhuizen PO Box 1207 3430BE Nieuwegein, The Netherlands;

    JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    pedestal; confinement; nitrogen; radiation; tokamak; metal wall;

    机译:基座禁闭氮;辐射;托卡马克金属墙;
  • 入库时间 2022-08-18 00:42:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号