首页> 外文期刊>Nuclear fusion >Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes
【24h】

Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

机译:使用多个系统代码评估CFETR作为核聚变核设施

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher B_T and I_p can result in a high gain Q_(fus) ~ 12, P_(fus) ~ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) > 1 as a target.
机译:本文介绍了最近发布的中国聚变工程测试反应堆(CFETR)概念设计的多系统代码基准测试研究的结果(Wan等,2014 IEEE Trans.Plasma Sci.42495)。通用原子系统代码(GASC)和托卡马克能源系统代码(TESC)这两个系统代码使用不同的方法得出在相同的CFETR约束下的CFETR性能参数,表明物理性能和聚变性能之间的相关性是一致的,并且计算的参数非常吻合。 wall繁殖的第一壁表面的优化和机器尺寸的最小化是高度兼容的。等离子体电流和轮廓的变化会导致所需的标准化物理性能发生变化,但是,它们不会显着影响机器的优化尺寸。 GASC和TESC还利用CFETR设计中的工程灵活性来探索低纵横比,大体积等离子体。假设ITER稳态情景物理,较大的等离子体以及适度较高的B_T和I_p可以导致高增益Q_(fus)〜12,P_(fus)〜1 GW机器接近DEMO的性能。结论是,CFETR基线模式可以满足聚变核科学设施(FNSF)任务的最低目标,而先进的物理学将使其能够全面解决示范反应堆(DEMO)道路上的关键技术空白。在进行CFETR施工之前,必须证明其稳态运行,还需要进一步发展以解决分流器的热负荷问题,并且必须以with繁殖比(TBR)> 1为目标设计毯子。

著录项

  • 来源
    《Nuclear fusion》 |2015年第2期|023017.1-023017.9|共9页
  • 作者单位

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    Tokamak Energy Ltd, Culham Science Center, Abingdon, OX14 3DB, UK;

    Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, People's Republic of China;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fusion energy; Fusion Nuclear Science Facility; system codes; steady-state; neutron fluence;

    机译:聚变能聚变核科学设施;系统代码;稳定状态;中子注量;
  • 入库时间 2022-08-18 00:42:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号