首页> 外文期刊>Nuclear fusion >Studies of power exhaust and divertor design for a 1.5 GW-level fusion power DEMO
【24h】

Studies of power exhaust and divertor design for a 1.5 GW-level fusion power DEMO

机译:1.5 GW级聚变功率DEMO的排气和分流器设计研究

获取原文
获取原文并翻译 | 示例
       

摘要

Power exhaust to the divertor and the conceptual design have been investigated for a steady-state DEMO in Japan with 1.5 GW-level fusion power and the major radius of 8.5 m, where the plasma parameters were revised appropriate for the impurity seeding scenario. A system code survey for the Ar impurity seeding suggested the volume-averaged density, impurity concentration and exhaust power from the main plasma of P_(sep) = 205-285 MW. The divertor plasma simulation (SONIC) was performed in the divertor leg length of 1.6 m with the fixed exhaust power to the edge of P_(out) = 250 MW and the total radiation fraction at the edge, SOL and divertor (P_(rad)/P_(out) = 0.8), as a first step to investigate appropriate design of the divertor size and geometry. At the outer target, partial detachment was produced near the strike-point, and the peak heat load (q_(trget))at the attached region was reduced to ~5 MW m"2 with appropriate fuel and impurity puff rates. At the inner divertor target, full detachment of ion flux was produced and the peak q_(target) was less than 10 MW m~(-2) mostly due to the surface-recombination. These results showed a power exhaust scenario and the divertor design concept. An integrated design of the water-cooling heat sink for the long leg divertor was proposed. Cu-ally (CuCrZr) cooling pipe was applicable as the heat sink to handle the high heat flux near the strike-point, where displacements per atom rate was estimated to be 0.5-1.5 per year by neutronics calculation. An arrangement of the coolant rooting for Cu-alloy and Reduced Activation Ferritic Martensitic (RAFM) steel (F82H) pipes in a divertor cassette was investigated, and the heat transport analysis of the W-monoblock and Cu-alloy pipe under the peak q_(target) of 10 MWm~(-2) and nuclear heating was performed. The maximum temperatures on the W-surface and Cu-alloy pipe were 1021 and 331 °C. Heat flux of 16 MW m~(-2) was distributed in the major part of the coolant pipe. These results were acceptable for the plasma facing and structural materials.
机译:在日本的稳态DEMO具有1.5 GW级聚变功率且主半径为8.5 m的情况下,已对偏滤器的功率排放和概念设计进行了研究,其中对等离子体参数进行了修改,以适合杂质注入情况。针对Ar杂质晶种的系统代码调查显示,P_(sep)= 205-285 MW的主要等离子体的体积平均密度,杂质浓度和排气功率。在1.6 m的扩散器支腿长度上进行了偏滤器等离子体模拟(SONIC),到P_(out)的边缘的固定排气功率= 250 MW,边缘,SOL和偏滤器的总辐射分数(P_(rad) / P_(out)= 0.8),作为研究偏滤器尺寸和几何形状的适当设计的第一步。在外部目标处,在触击点附近产生了部分脱离,并且在适当的燃料和杂质抽吸速率下,附着区域的峰值热负荷(q_(trget))降低至〜5 MW m“ 2。分流器靶,产生了离子通量的完全脱离,且峰q_(靶)的最大值小于10 MW m〜(-2),这主要是由于表面重组所致,这些结果表明了功率消耗的情况和分流器的设计理念。提出了长腿偏滤器水冷式散热器的整体设计方案,采用铜合金(CuCrZr)冷却管作为散热器,以处理接近击穿点的高热通量,并据此估算了每原子速率的位移每年通过中子学计算为0.5-1.5,研究了铜合金和还原活化铁素体马氏体(RAFM)钢(F82H)管道在分流器盒中的冷却剂生根布置,并对W- q_(峰值以下的单块和铜合金管目标)10 MWm〜(-2)并进行核加热。 W表面和铜合金管的最高温度为1021和331°C。 16MW m〜(-2)的热通量分布在冷却剂管的主要部分。这些结果对于等离子面层和结构材料是可以接受的。

著录项

  • 来源
    《Nuclear fusion》 |2017年第12期|593-604|共12页
  • 作者单位

    National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST) Naka, Ibaraki 311-0193, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST) Naka, Ibaraki 311-0193, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST) Naka, Ibaraki 311-0193, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST) Naka, Ibaraki 311-0193, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST) Naka, Ibaraki 311-0193, Japan;

    Graduate School of Engineering, Nagoya Univ., Nagoya 464-8603, Japan;

    Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan;

    National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori 039-3212, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    divertor; DEMO; power exhaust; SONIC; simulation; impurity seeding; detachment;

    机译:偏滤器演示动力排气索尼克模拟;杂质种子分离;
  • 入库时间 2022-08-18 00:41:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号