首页> 外文期刊>Nuclear fusion >TCV heating and divertor upgrades
【24h】

TCV heating and divertor upgrades

机译:TCV加热和分流器升级

获取原文
获取原文并翻译 | 示例
       

摘要

The operational range and the reactor relevance of the TCV experiments are being enhanced by two sets of major upgrades. The first includes the installation of neutral beam injection (NBI) and new electron cyclotron (EC) auxiliary heating sources, to reach ITER relevant beta values and vary the electron to ion temperature ratio. A 15?30?keV, 1 MW tangential NBI system has been operational on TCV since 2015. A second beam of 1 MW, 50?60?keV ion energy, also aligned tangentially but opposite to the first beam, is foreseen to approach beta limits, vary the applied torque through zero and probe suprathermal ion physics. For the EC power, two 0.75 MW gyrotrons at the second harmonic have been installed. The next step will add two 1 MW dual frequency gyrotrons, one of which is currently being commissioned. These heating upgrades will increase the total available power for high-density plasmas from 1.25 MW to 5.0 MW. The rest of the upgrade consists of installing an in-vessel structure to form a divertor chamber of increased closure, to reach higher neutral divertor densities and impurity compression and thereby extend TCV divertor regimes toward more reactor relevant conditions for conventional and advanced divertor configurations. Graphite gas baffles will be installed inside the TCV vessel to delineate divertor and main chamber regions. The first set of baffles features 32 tiles on the high and 64 tiles on the low-field side, with geometry guided by simulations performed using the SOLPS-ITER code. The baffles are expected to be effective for a wide range of divertor configurations, including snowflake and super-X divertors, yet maintain plasma close to the inner wall for improved passive stabilization. The baffle dimensions may be varied in the future to modify the divertor closure. Control of the plasma, neutral and impurity densities will be achieved by a combination of toroidally distributed gas injection valves and impurity seeding, and a possible addition of cryo-condensation pumps. Significant diagnostic developments will be undertaken, to better characterize the divertor plasma, measure power and particle deposition at the strike points, and, specifically, improve our physics understanding of the detachment process.
机译:TCV实验的运行范围和反应堆相关性通过两组主要升级而得到了增强。首先是安装中性束注入(NBI)和新的电子回旋加速器(EC)辅助加热源,以达到ITER相关的beta值并改变电子与离子的温度比。自2015年以来,一个15?30?keV,1 MW切向NBI系统已在TCV上运行。预计第二束1 MW,50?60?keV的离子能量也与第一束相切,但与第一束相反,接近beta限制,通过零变化施加的扭矩,并探测超热离子物理学。对于EC电源,已经安装了两个0.75 MW二次谐波的回旋管。下一步将增加两个1 MW双频回旋管,其中一个目前正在调试中。这些供暖升级将使高密度等离子体的总可用功率从1.25 MW增加到5.0 MW。其余的升级工作包括安装一个船内结构,以形成一个增加封闭性的分流器腔,以达到更高的中性分流器密度和杂质压缩,从而将TCV分流器范围扩展到常规和高级分流器配置的更多反应堆相关条件。石墨气体挡板将安装在TCV容器内部,以描绘分流器和主腔室区域。第一组挡板在高场上具有32个磁贴,在低场侧上具有64个磁贴,其几何形状由使用SOLPS-ITER代码执行的模拟指导。挡板有望对包括雪花和super-X偏滤器在内的各种偏滤器配置有效,但仍将等离子体保持在内壁附近,以改善被动稳定性。将来,挡板的尺寸可能会有所变化,以改变分流器的关闭度。通过结合环形分布的气体注入阀和杂质注入以及可能添加的低温冷凝泵,可以控制等离子体,中性和杂质密度。将进行重要的诊断开发,以更好地表征偏滤器的等离子体,测量冲击点处的功率和颗粒沉积,特别是提高我们对分离过程的物理学理解。

著录项

  • 来源
    《Nuclear fusion》 |2020年第1期|016019.1-016019.10|共10页
  • 作者

  • 作者单位

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland|Univ Tuscia Dept Econ Engn Soc & Business Org DEIm I-01100 Viterbo Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    TCV tokamak; divertor; ECRH; NBH; diagnostics;

    机译:TCV托卡马克偏滤器ECRH;NBH;诊断;
  • 入库时间 2022-08-18 05:21:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号