首页> 外文期刊>Nuclear fusion >Characterization of the in situ leading-edge- induced melting on the ITER-like tungsten divertor in EAST
【24h】

Characterization of the in situ leading-edge- induced melting on the ITER-like tungsten divertor in EAST

机译:EAST样ITER钨分流器上原位前沿感应熔化的特征

获取原文
获取原文并翻译 | 示例
       

摘要

Understanding tungsten melting behavior and its influence on plasma operation is one of the main concerns for ITER, which will be operated with a full tungsten divertor. Similar to ITER, actively cooled tungsten cassette modules have been successfully installed for the upper divertor in EAST for a stronger heat exhaust ability. However, an unexpected in situ tungsten melting phenomenon has been observed around the strike point area on both the inner and outer targets during recent EAST plasma campaigns. It was identified that such tungsten melting was caused by the leading edges, which leads to much high heat load on the protruded edges of the cassette modules. All tungsten melting occurred only at the edges of the cassette modules where larger misalignment up to millimeter scale was formed. The melted layer, which was mainly driven by the electromagnetic force, was moved either up or down under different conditions. Only a few bridge connections along the vertical direction could be formed. Such tungsten melting ejected a large number of droplets into the core plasma, and resulted in a sharp increase of tungsten impurity and power radiation and could eventually lead to disruptions. With droplet ejection and melted layer removal, the melted corner seems to form a moderate chamfer structure and thus may mitigate the temperature rise. Under current operation conditions, EAST can tolerate such melting to some extent. Several solutions to help avoid this kind of melting have been proposed according to the thermal analysis for future EAST operations.
机译:了解钨的熔化行为及其对等离子体运行的影响是ITER的主要考虑之一,它将使用全钨分流器运行。类似于ITER,已经成功地为EAST的上部分流器安装了主动冷却钨盒模块,从而具有更强的散热能力。但是,在最近的EAST等离子运动中,在内外靶的触击点附近都观察到了意外的原位钨熔化现象。已经确定,这种钨熔化是由前缘引起的,这导致了盒模块的突出边缘上的很高的热负荷。所有钨的熔化仅发生在盒式模块的边缘,在该边缘上形成了较大的未对准直到毫米级。主要由电磁力驱动的熔融层在不同条件下向上或向下移动。沿垂直方向只能形成几个桥连接。钨的熔化将大量液滴喷入核心等离子体中,导致钨杂质和功率辐射急剧增加,最终可能导致破坏。随着液滴喷射和熔化层的去除,熔化的拐角似乎形成了适度的倒角结构,因此可以减轻温度升高。在当前的运行条件下,EAST可以在某种程度上忍受这种熔化。根据热分析,为未来的EAST操作提出了几种避免这种熔化的解决方案。

著录项

  • 来源
    《Nuclear fusion》 |2020年第1期|016036.1-016036.11|共11页
  • 作者

  • 作者单位

    Chinese Acad Sci Inst Plasma Phys Hefei 230031 Peoples R China;

    Chinese Acad Sci Inst Plasma Phys Hefei 230031 Peoples R China|Univ Sci & Technol China Grad Sch Sci Isl Branch Hefei 230026 Peoples R China;

    Chinese Acad Sci Inst Plasma Phys Hefei 230031 Peoples R China|Univ Sci & Technol China Sch Nucl Sci & Technol Hefei 230026 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EAST; tungsten divertor; melting; heat load; leading edge;

    机译:东;钨分流器融化;热负荷;前沿;
  • 入库时间 2022-08-18 05:21:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号