首页> 外文期刊>Nuclear fusion >DIII-D research towards establishing the scientific basis for future fusion reactors
【24h】

DIII-D research towards establishing the scientific basis for future fusion reactors

机译:DIII-D研究,旨在为未来的聚变反应堆建立科学基础

获取原文
获取原文并翻译 | 示例
       

摘要

DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (similar to 30 kPa) and stored energy (3.2 MJ) with H-98y2 approximate to 1.6-2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric beta(TE) independent of current between q(95) = 2.8-3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses approximate to 0 injected torque and the operating space is more ITER-relevant. Finally, the high-beta(N) (<= 3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving similar to 40% divertor heat flux reduction using either argon or neon with P-tot up to 15 MW.
机译:DIII-D研究致力于通过重点关注支持关键聚变目标的等离子物理基础知识,了解不同核心与边界等离子物理的相互作用以及开发实现高性能的集成方案来应对为ITER和下一代聚变设备做准备的关键挑战融合制度。对聚变能科学的基础研究发现,破裂后失控电子(RE)的异常耗散很可能是由于与RE驱动的动力学不稳定性的相互作用所致,其中一些已经被直接观察到,从而为使用RE耗散RE能量耗散开辟了一条新途径。自然激发的波浪。固有旋转和陀螺动力学仿真的无因次参数缩放给出了具有显着湍流稳定性的预测ITER旋转曲线。相干成像光谱学证实了遍及偏滤器的流向目标的声波接近,这可能是对流主导的平行热通量的原因。堆芯边界集成研究表明,小角缝隙偏滤器在较低密度下实现了分离,并使等离子冷却跨过偏滤器靶板,这对于控制热通量和腐蚀至关重要。超级H模式方案已扩展到高等离子体电流(2.0 MA)和密度,以实现非常高的基座压力(类似于30 kPa)和存储的能量(3.2 MJ),H-98y2约为1.6-2.4。在方案工作中,发现零注入扭矩的ITER基线Q = 10方案具有独立于q(95)= 2.8-3.7之间的电流的融合增益度量beta(TE),以及RMP ELM的基座旋转下限已发现抑制。在表现出改进的性能且没有ELM的宽基座QH模式下,已消除了启动反扭矩,因此整个放电使用的喷射扭矩大约为0,并且工作空间与ITER相关性更高。最后,高β(N)(<= 3.8)混合方案已扩展到辐射滤清器运行所必需的高密度水平,使用氩气或氖气并通过P-tot提升,实现了大约40%的滤清器热通量减少至15兆瓦。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号