首页> 外文期刊>Nuclear fusion >Overview of physics studies on ASDEX Upgrade
【24h】

Overview of physics studies on ASDEX Upgrade

机译:ASDEX升级的物理研究概述

获取原文
获取原文并翻译 | 示例
       

摘要

The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q(95) = 5.5, beta(N) <= 2.8) at low density. Higher installed electron cyclotron resonance heating power <= 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG.Stable high-density H-modes with P-sep/R <= 11 MW m(-1) with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently H-H98(y,H-2) <= 1.1. This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated.Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of T-i and E-r allow for inter ELM transport analysis confirming that E-r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to n(GW) <= 0.7 have been characterised using beta-feedback.Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle-measured for the first time-or the cross-phase angle of T-e and n(e) fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow T-e profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvenic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
机译:与EUROfusion MST1工作队联合运行的ASDEX升级(AUG)计划继续显着增强ITER和DEMO的物理基础。在这里,完整的钨壁是推断未来设备的关键资产。较高的总加热功率,灵活的加热组合和全面的诊断设置,使得研究范围从模拟ITER和DEMO的刮擦层和分流器条件到高密度到完全无感运行(q(95)= 5.5,beta(低密度时N)<= 2.8)。更高的电子回旋加速器共振加热功率<= 6 MW,新的诊断方法和改进的分析技术进一步增强了AUG的能力.P-sep / R <= 11 MW m(-1)的稳定高密度H模式具有完全的分离的打击点已得到证明。已经确定,靠近分离线的气球膨胀不稳定性是导致H模式密度极限的潜在原因,并且还发现它对进入小边缘定位模式(ELM)起着重要作用。使用面向路径的方法来成功地避免了密度极限破坏,并且在理解电子束的耗散和避免方面取得了进展。现在常规实现具有共振磁扰动的ELM抑制,达到瞬时H-H98(y,H-2)<= 1.1。这提供了对场穿透物理的新见解,特别是在等离子体流方面。建模与等离子体响应测量非常吻合,在ELM之前观察到的螺旋局部膨胀结构是由于磁扰动而改变了边缘稳定性的证据。进一步阐述了3D扰动对热负荷模式和快速离子损失的影响。在理解ELM循环本身方面也取得了进展。在这里,新的T-i和E-r的快速测量可以进行内部ELM传输分析,从而确认E-r即使在快速的时间尺度上也由反磁性项主导。新的分析技术可以对ELM崩溃进行详细比较,并且与非线性MHD建模非常吻合。在ELM碰撞期间观察到的加速离子可以看作是ELM期间重新连接的证据。由于在“自然”的DEMO研究中,I型ELM(甚至缓解了)可能不是可行的操作方案,因此没有扩展ELM方案。使用β反馈表征了高达n / n(GW)<= 0.7的稳定I模式。通过新的测量方法(例如首次测量涡流倾斜角)更详细地描述了湍流,从而提高了核心物理学的水平-或Te和n(e)的交叉相角波动。这些新数据对陀螺动力学湍流建模施加了强大的约束。此外,在不同的主要物种(H,D和He)中以及在不同的加热混合条件下仔细执行的研究突显了碰撞能量交换对于解释能量约束的重要性。现在,具有空心T-e轮廓的新方案可以访问模仿燃烧等离子体条件方面的方案,并且尽管存在子通量束能量,但仍导致高能粒子模式发生非线性相互作用。这将有助于验证用于预测ITER和DEMO的快速离子代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号