首页> 外文期刊>Nuclear fusion >Modeling 3D plasma boundary corrugation and tailoring toroidal torque profiles with resonant magnetic perturbation fields in ITER
【24h】

Modeling 3D plasma boundary corrugation and tailoring toroidal torque profiles with resonant magnetic perturbation fields in ITER

机译:在ITER中通过共振磁扰动场对3D等离子边界波纹建模并定制环形转矩分布

获取原文
获取原文并翻译 | 示例
       

摘要

Plasma response to 3D resonant magnetic perturbations (RMPs), applied for the purpose of controlling type-I edge localized modes (ELMs) in ITER with the baseline ELM control coils, is computed using a toroidal, resistive, full magneto-hydrodynamic model. Considered are five representative ITER plasmas, designed for different phases of the ITER exploration. The plasma response, measured by the plasma boundary corrugation, is found to be similar for the two DT scenarios at full plasma current (15 MA) and full toroidal field (5.3 T) but different fusion gain factors (Q = 5 versus Q = 10), indicating similar ELM control performance with the same RMP coil current configuration. The other plasma scenarios, with proportionally scaled down plasma current and toroidal field, can have different plasma boundary corrugation. The key plasma parameter affecting the response is the plasma toroidal flow near the pedestal region, which significantly varies depending on the transport model assumption for the toroidal momentum. Lower pedestal flow leads to a stronger edge peeling response from the plasma and thus probably a better ELM control. The optimal coil configuration for controlling type-I ELMs is similar for all four ITER plasmas with similar safety factor but different current levels, but is significantly different for the case at half plasma current (7.5 MA) and full field (5.3 T). On the other hand, for the purpose of controlling the radial profile of the plasma toroidal rotation in ITER using 3D fields, the relative amplitude of the toroidal torque density, between the plasma core and edge region, is optimized. Generally, a strong coupling between the core and edge torques is observed, largely due to the middle row ELM control coils. The best decoupling scheme of the core-edge torque distribution thus de-emphasizes the role of the middle row coils. Optimal coil current configurations are found for the ITER 15 MA/5.3 T Q = 10 plasma, that synergistically maximize the plasma edge-peeling response (indication for good ELM control) and the toroidal torque near the plasma edge (good for RMP field penetration through pedestal).
机译:使用环形,电阻性,全磁流体动力学模型来计算对3D共振磁扰动(RMP)的等离子体响应,该等离子体响应用于使用基线ELM控制线圈控制ITER中的I型边缘局部模式(ELM)。考虑了为ITER探索的不同阶段设计的五种代表性ITER等离子体。发现通过等离子体边界波纹测量的等离子体响应对于两种DT情况在全等离子体电流(15 MA)和全环形场(5.3 T)下是相似的,但是融合增益因子不同(Q = 5 vs Q = 10 ),表示在相同的RMP线圈电流配置下具有类似的ELM控制性能。具有按比例缩小的等离子体电流和环形场的其他等离子体场景可以具有不同的等离子体边界波纹。影响响应的关键等离子体参数是在基座区域附近的等离子体环流,该环流取决于环流动量的传输模型假设而显着变化。较低的基座流动会导致更强的等离子体边缘剥离响应,因此可能会更好地控制ELM。对于具有相同安全系数但电流水平不同的所有四个ITER等离子体,用于控制I型ELM的最佳线圈配置均相似,但在半等离子体电流(7.5 MA)和全电场(5.3 T)的情况下,则明显不同。另一方面,为了使用3D场在ITER中控制等离子体环形旋转的径向轮廓,优化了等离子体核心和边缘区域之间的环形转矩密度的相对幅度。通常,观察到铁心和边缘扭矩之间的强耦合,这在很大程度上是由于中间排的ELM控制线圈引起的。因此,铁芯边缘扭矩分布的最佳解耦方案不再强调中间排线圈的作用。对于ITER 15 MA / 5.3 TQ = 10等离子体,发现了最佳的线圈电流配置,可以协同地最大化等离子体边缘剥离的响应(指示良好的ELM控制)和靠近等离子体边缘的环形转矩(有利于RMP磁场穿过基座的穿透) )。

著录项

  • 来源
    《Nuclear fusion》 |2019年第9期|096038.1-096038.28|共28页
  • 作者单位

    Donghua Univ Coll Sci Shanghai 201620 Peoples R China|Minist Educ Magnet Confinement Fus Res Ctr Beijing Peoples R China;

    Gen Atom POB 85608 San Diego CA 92186 USA;

    ITER Org Route Vinon CS 90 046 F-13067 St Paul Les Durance France;

    Donghua Univ Coll Sci Shanghai 201620 Peoples R China|Forschungszentrum Julich Inst Energie & Klimaforsch Plasmaphys Julich Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    plasma response; resonant magnetic perturbations; ITER;

    机译:血浆反应共振磁扰动国际热核实验堆;
  • 入库时间 2022-08-18 04:36:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号