首页> 外文期刊>Nuclear engineering and technology >DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM
【24h】

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

机译:铅减速谱仪系统的辐射屏蔽结构设计优化

获取原文
获取原文并翻译 | 示例
           

摘要

A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as U-235, Pu-239, Pu-241, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux (>10(12) n/cm(2).s) neutron source comprised of a high-energy (30 MeV)/high-current (similar to 2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (<0.06 mu Sv/h), a few shielding materials [high-density polyethylene (HDPE)-Borax, B4C, and Li2CO3] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HOPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HOPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future. Copyright (C) 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.
机译:铅减慢光谱仪(LSDS)系统是一种很有前途的无损测定技术,能够定量测量乏核燃料及其热解过程中的主要裂变同位素(如U-235,Pu-239,Pu- 241,以及次要act系元素。韩国原子能研究所(韩国大田)目前正在开发的LSDS系统计划利用高通量(> 10(12)n / cm(2).s)的中子源,其中包括高能( 30 MeV)/大电流(类似于2 A)电子束和重金属靶,这会导致该设施非常强烈和复杂的辐射场,因此需要结构屏蔽以确保安全。使用MCNPX进行结构屏蔽设计的优化,以评估几种代表性假设设计的中子剂量率。为了满足设施的建设成本和中子衰减能力,同时达到目标剂量率限制(<0.06μSv / h),一些屏蔽材料[高密度聚乙烯(HDPE)-硼砂,B4C和Li2CO3]被认为是主要的中子吸收层,它包裹在双面混凝土墙内。 MCNP仿真表明,HOPE-Borax是上述候选材料中最有效的,并且在限制厚度时,屏蔽层的总厚度应超过100 cm,以满足设备屏蔽墙外表面的剂量限制HOPE-Borax中间层的高度应小于5厘米。但是,屏蔽墙必须包括用于LSDS系统的仪器和安装孔。通过采用锯齿形的两侧都带有混凝土覆盖物,大大减轻了通过孔的辐射泄漏。建议的屏蔽结构优化设计满足剂量率限制,可在不久的将来用于设施的建设。版权所有(C)2015,由Elsevier Korea LLC代表韩国核协会出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号