首页> 外文期刊>Nuclear Engineering and Design >Analysis of likelihood of lower head failure and ex-vessel fuel coolant interaction energetics for AP1000
【24h】

Analysis of likelihood of lower head failure and ex-vessel fuel coolant interaction energetics for AP1000

机译:AP1000下头部故障和船外燃料冷却液相互作用能学的可能性分析

获取原文
获取原文并翻译 | 示例
           

摘要

A one-dimensional model is formulated to assess the thermal response of the Westinghouse Advanced Plant (AP1000) lower head based on two bounding melt configurations. Melt Configuration Ⅰ involves a stratified light metallic layer on top of a molten ceramic pool, and melt Configuration Ⅱ represents the conditions that an additional heavy metal layer forms below the ceramic pool. The approach consists of the specification of initial conditions; determination of the mode, the size and the location of lower head failure based on heat transfer analyses; computer simulation of the fuel coolant interaction processes; and finally, an examination of the impact of the uncertainties in the initial conditions and the model parameters on the fuel coolant interaction energetics through a series of sensitivity calculations. The results of the calculations for melt Configuration Ⅰ show that the heat flux remains below critical heat flux (CHF) in the molten oxide pool, but the heat flux in the light metal layer could exceed CHF because of the focusing effect associated with presence of the thin metallic layers. The thin metallic layers are associated with smaller quantities of the molten oxide in the lower plenum following the initial relocation into the lower head. The calculations show that the lower head failure probability due to the focusing effect of the stratified metal layer ranges from ~0.04 to ~0.30. On the other hand, the thermal failure of the lower head at the bottom location for melt Configuration Ⅱ is assessed to be highly unlikely. Based on the in-vessel retention analysis, the base case for the ex-vessel fuel coolant interaction (FCI) is assumed to involve a side failure of the vessel involving a metallic pour into the cavity water. The FCI sensitivity calculations intended to assess the implications of the uncertainties in initial conditions and the FCI modeling parameters show that the FCI loads range from a few MPa to upward of 1000 MPa (maximum pool pressure) with corresponding impulse loads ranging from a few kPa s to a few hundred kPa s.
机译:建立了一个一维模型,以基于两个边界熔体配置来评估Westinghouse Advanced Plant(AP1000)下压头的热响应。熔体结构Ⅰ包含在熔融陶瓷池顶部的分层轻金属层,熔体结构Ⅱ表示在陶瓷池下方形成另外的重金属层的条件。该方法包括初始条件的说明;根据传热分析确定下头部故障的方式,大小和位置;燃料冷却剂相互作用过程的计算机模拟;最后,通过一系列敏感性计算,考察了初始条件和模型参数的不确定性对燃料冷却剂相互作用能的影响。熔体结构Ⅰ的计算结果表明,在熔融氧化物池中,热通量仍低于临界热通量(CHF),但由于存在着与之相关的聚焦效应,轻金属层中的热通量可能超过CHF。薄金属层。在最初重新安置到下部机头中之后,薄金属层与下部气室中的熔融氧化物量较小相关。计算结果表明,由于分层金属层的聚焦作用,降低喷头失效的可能性在〜0.04 ~~ 0.30之间。另一方面,对于熔体构型Ⅱ,下部头部在底部位置的热失效被认为是极不可能的。基于船内滞留分析,假定船外燃料冷却剂相互作用(FCI)的基本情况涉及容器的侧面故障,其中包括将金属倒入型腔水中。用于评估初始条件不确定性影响的FCI敏感性计算和FCI建模参数表明,FCI负载范围从几MPa到1000 MPa(最大池压力)以上,相应的脉冲负载范围从几kPa s到几百kPa s。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2005年第15期|p.1583-1605|共23页
  • 作者

    H. Esmaili; M. Khatib-Rahbar;

  • 作者单位

    Energy Research Inc., P.O. Box 2034, Rockville, MD 20847-2034, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号