首页> 外文期刊>Nuclear Engineering and Design >Verification and validation benchmarks
【24h】

Verification and validation benchmarks

机译:验证和验证基准

获取原文
获取原文并翻译 | 示例
       

摘要

Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of achievement in V&V activities, how closely related the V&V benchmarks are to the actual application of interest, and the quantification of uncertainties related to the application of interest.
机译:验证和确认(V&V)是评估计算仿真的准确性和可靠性的主要方法。 V&V的方法和程序从根本上提高了在几个后果重大的领域进行仿真的可信度,例如核反应堆安全,地下核废料存储和核武器安全。尽管术语在各个工程学科之间并不统一,但是代码验证涉及评估软件编码的可靠性,而解决方案验证涉及评估计算模型的解决方案的数值准确性。验证通过将计算结果与实验数据进行比较来解决计算模拟的物理建模精度。在计算仿真的每个领域中,已经建立了多年的代码验证基准和验证基准。但是,尚未提出有关V&V基准的构建和使用的全面指南。例如,核反应堆安全领域并未将重点放在代码验证基准上,而是将重点放在开发验证基准上。这些验证基准中有许多与实际反应堆在接近安全关键条件下的运行密切相关,而不是更基本的物理基准。本文提出了一些建议,以有效地设计和使用基于制造解决方案,经典分析解决方案和高精度数值解决方案的代码验证基准。此外,本文还为验证基准的设计和使用提出了建议,重点介绍了构建模块实验的精心设计,代码输入和输出的实验测量不确定度的估计,验证指标以及模型校准的作用在验证中。有人认为,对计算模型的预测能力的理解是建立在V&V活动的成就水平,V&V基准与感兴趣的实际应用之间有多紧密的联系以及与感兴趣的应用相关的不确定性的量化上的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号