首页> 外文期刊>Nuclear Engineering and Design >Advanced DVI for ECC direct bypass mitigation
【24h】

Advanced DVI for ECC direct bypass mitigation

机译:用于ECC直接旁路缓解的高级DVI

获取原文
获取原文并翻译 | 示例
       

摘要

An ECC direct bypass fraction during a late reflood phase of a LBLOCA is strongly dependent on the characteristics of the cross flow and the geometrical configuration of a DVI in the downcomer of a pressurized light water reactor. The important design parameters of a DVI are the elevation, the azimuthal angle, and the separator to prevent a steam-water interaction. An ECC sub-channel to separate or to isolate an ECC water from a high-speed cross flow is one of the important design features to mitigate the ECC bypass phenomena. A dual core barrel cylinder as an ECC flow separator is located between a reactor vessel and a core barrel outer wall in the downcomer annulus. A new narrow gap between the core barrel and the additional dual core barrel plays the role of a downward ECC flow channel or an ECC flow separator in a high-speed cross flow field of the downcomer annulus. The flow zone around a broken cold leg in the downcomer annulus has the role of a high ECC direct bypass due to a strong suction force while the wake zone of a hot leg has the role of an ECC penetration. Thus, the relative azimuthal angle of the DVI nozzle from the broken cold leg is an important design parameter. A large azimuthal angle from a cold leg to a hot leg needs to avoid a high suction flow zone when an ECC water is being injected. The other enhancing mechanism of an ECC penetration is a grooved core barrel which has small rectangular-shaped grooves vertically arranged on the core barrel wall of the reactor vessel downcomer annulus. These grooves have the role for a generation of a vortex induced by a high-speed cross flow. Since the stagnant flow in a lateral direction and rotational vortex provides the pulling force of an ECC drop or film to flow down into the lower downcomer annulus by gravity, the ECC direct bypass fraction is reduced when compared to the current design of a smoothed wall. An open channel of grooves generates a stagnant vortex, while a closed channel of grooves creates an isolated ECC downward flow channel from a high-speed lateral flow. In this study, new design concepts for a dual core barrel cylinder, grooved core barrel, and a reallocation of the DVI azimuthal angle are proposed and tested by using an air-water 1 /5 scaled air-water test facility. The ECC direct bypass reduction performances of the new design concepts have been compared with that of the standard type of a DVI injection. The azimuthal angle of the DVI nozzle from a broken cold leg varies from -15" to +52° toward a hot leg. The test results show that the azimuthal injection angle is an effective parameter to reduce the ECC direct bypass fraction. The elevation of the DVI nozzle is also an important parameter to reduce the ECC direct bypass fraction. The most effective design for reducing the ECC direct bypass fraction is a dual core barrel. The reduction fraction when compared to the standard DVI is about -30% for the dual core barrel while it is -15% for the grooved core barrel.
机译:LBLOCA的后期再驱阶段中的ECC直接旁路比例在很大程度上取决于压水反应堆降液管中的横流特性和DVI的几何构型。 DVI的重要设计参数是仰角,方位角和防止蒸汽与水相互作用的分隔器。用于将ECC水与高速横流分离或隔离的ECC子通道是减轻ECC旁路现象的重要设计特征之一。双芯筒圆筒作为ECC流动分离器位于下导管环空的反应堆容器和芯筒外壁之间。芯筒和附加的双芯筒之间的新的狭窄间隙在下导管环的高速错流场中扮演着向下ECC流动通道或ECC流动分离器的角色。由于强大的吸力,降液管环中折断的冷段周围的流动区具有高ECC直接旁路的作用,而热段的尾流区具有ECC渗透的作用。因此,DVI喷嘴相对于折断的冷腿的相对方位角是重要的设计参数。从冷腿到热腿的大方位角需要避免在注入ECC水时产生较大的吸入流区域。 ECC渗透的另一种增强机制是带槽的芯管,该芯管具有垂直排列在反应堆容器降液管环空的芯管壁上的矩形小槽。这些槽具有产生由高速横流引起的涡流的作用。由于在横向方向上的停滞流动和旋转涡流提供了ECC液滴或薄膜的拉力,以通过重力向下流到下降液管环带中,因此与当前的平滑墙设计相比,ECC直接旁路比降低了。凹槽的开放通道产生停滞的涡流,而凹槽的封闭通道则从高速侧向流中形成隔离的ECC向下流动通道。在这项研究中,提出了针对双芯筒形圆筒,带槽芯筒和DVI方位角重新分配的新设计概念,并使用了空气/水1/5比例缩放的空气-水测试设备进行了测试。新设计概念的ECC直接旁路减少性能已与DVI注入的标准类型进行了比较。 DVI喷嘴从断裂的冷腿到热腿的方位角从-15“到+ 52°不等。测试结果表明,方位角注入角是减小ECC直接旁路分数的有效参数。 DVI喷嘴也是降低ECC直接旁路比例的重要参数,降低ECC直接旁路比例的最有效设计是双芯机筒,与标准DVI相比,双喷嘴机芯的降低比例约为-30%。带凹槽的芯管为-15%。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2009年第6期|1095-1102|共8页
  • 作者单位

    Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute (KAERI), 150 Duckjin-Dong, Yuseong-Ku, Daejeon, 305-353, Republic of Korea;

    Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute (KAERI), 150 Duckjin-Dong, Yuseong-Ku, Daejeon, 305-353, Republic of Korea;

    Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute (KAERI), 150 Duckjin-Dong, Yuseong-Ku, Daejeon, 305-353, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A area; D diameter; flowin total ECC flow in; flowout ECC flow out by entrainment; H height; et al;

    机译:区域D直径;流入的总ECC流量;ECC带出流出H高度;等;
  • 入库时间 2022-08-18 00:45:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号