首页> 外文期刊>Nuclear Engineering and Design >Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications
【24h】

Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

机译:钨hen铀尿素金属陶瓷燃料在空间推进和动力应用中的浸没临界安全性

获取原文
获取原文并翻译 | 示例
       

摘要

Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten-uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.
机译:核动力火箭是载人火星飞行的首选推进技术,而钨-铀氧化物金属陶瓷燃料可为核动力火箭提供显着的性能和成本优势。打算在太空中使用的核反应堆必须在发射之前和发射期间保持亚临界状态,并且在发射中止情况下必须保持亚临界状态,在这种情况下,反应堆会退回到地球并淹没在地面物质(包括海水,湿砂或干砂)中。浸没会增加中子的反射,还会使中子光谱热化,这通常会增加堆芯的反应性。对于紧凑的快速光谱反应堆,这种效果通常非常重要。本文针对具有多种燃料成分的代表性钨/铀氧化物燃料反应堆提供了浸没临界安全性分析。每个浸没情况都考虑了基体合金中的content含量和金属陶瓷中的氧化铀体积分数。包含inclusion显着提高了反应器的浸没临界安全性。尽管增加的氧化铀含量增加了堆芯的反应性,但它​​并未显着影响反应器的浸入性能。在金属陶瓷基体中分布有rh的反应堆与在冷却剂通道中有cl包裹的反应堆之间的浸没行为没有显着差异。与较长的堆芯相比,在浸没情况下冷却剂通道的溢流和大量光谱位移吸收剂(即高concentration浓度)的存在进一步降低了短堆堆芯的反应性。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2014年第7期|143-149|共7页
  • 作者单位

    Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID, USA, 995 University Blvd., Idaho Falls, ID 83402;

    Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID, USA;

    Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID, USA;

    Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, Golden, CO 80401, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:43:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号