首页> 外文期刊>Nuclear Engineering and Design >Comparison of 2D and 3D heat transfer models around the coolant channels in the HTR-PM side reflector
【24h】

Comparison of 2D and 3D heat transfer models around the coolant channels in the HTR-PM side reflector

机译:HTR-PM侧反射器中冷却剂通道周围的2D和3D传热模型的比较

获取原文
获取原文并翻译 | 示例
       

摘要

In the HTR-PM pebble bed reactor heat is produced in a cylindrical core surrounded by a graphite reflector. The helium coolant flowing down through the core first flows up through 30 coolant channels in the reflector, cooling it. Heat is also transferred through the reflector in radial direction to the pressure vessel and other surroundings, which is the main heat loss mechanism during a loss of cooling accident. Usually heat transfer in the reflector region is modelled using a 2D axi-symmetric geometry, modelling the region containing the coolant channels as a homogenized mixture of coolant channel and graphite reflector using a porosity value, sometimes using very course meshes. In reality temperature gradients in azimuthal direction will exist around the coolant channels, possibly affecting both heat transfer to the coolant and heat transfer through the graphite around the coolant channels to the outer boundary. This paper investigates the accuracy of the 2D model by comparing calculations for a fine and course 2D mesh with a 3D mesh in which the coolant channel geometry is explicitly modelled. Two cases were investigated: one representing full power operation, and the other a loss of forced cooling incident with no helium flow through the coolant channels. The course 2D mesh resulted in large errors in the reflector temperature field for full power conditions, overestimating the temperature drop across the coolant channel region. The 2D fine mesh compared reasonably well with the 3D mesh, although it resulted in both an overestimation of the effective heat transfer rate to the coolant channels and an underestimation of the effctive resistance to heat transfer in the reflector in the radial direction around the coolant channels. Especially the last can lead to an underestimation of reflector and core temperatures during a loss of coolant accident. To amend this problem, the conductivity of the graphite in the coolant channel region should be adjusted in the 2D porous model to compensate for the added effective resistance to heat transfer in radial direction due to the geometry.
机译:在HTR-PM卵石床反应器中,在被石墨反射器包围的圆柱芯中产生热量。向下流经堆芯的氦冷却剂首先向上流经反射器中的30个冷却剂通道,以对其进行冷却。热量也通过反射器沿径向方向传递到压力容器和其他环境,这是在发生冷却事故时的主要热损失机制。通常,反射器区域中的传热是使用2D轴对称几何模型进行建模的,使用孔隙率值(有时使用非常多的网格)将包含冷却剂通道的区域建模为冷却剂通道和石墨反射器的均质混合物。实际上,在冷却剂通道周围将存在方位角方向的温度梯度,这可能会影响到冷却剂的传热和通过石墨在冷却剂通道周围到外边界的传热。本文通过将精细和渐进2D网格与3D网格的计算进行比较,研究了2D模型的准确性,在3D网格中明确建模了冷却剂通道的几何形状。研究了两种情况:一种代表全功率运行,另一种表示没有氦气流过冷却剂通道而导致的强制冷却损失。二维二维网格导致全功率条件下反射器温度场出现较大误差,从而高估了冷却剂通道区域的温度下降。 2D细网格与3D网格相当好,尽管它既导致对冷却剂通道的有效传热速率的高估,也导致对反射器在冷却剂通道周围径向上传热的有效阻力的低估。 。特别是在损失冷却剂事故期间,最后一个会导致反射器和纤芯温度的低估。为了解决这个问题,应在2D多孔模型中调整冷却剂通道区域中石墨的电导率,以补偿由于几何形状而增加的径向热传递有效阻力。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2014年第5期|465-471|共7页
  • 作者单位

    Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;

    Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;

    Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;

    Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号