首页> 外文期刊>Nuclear Engineering and Design >Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development
【24h】

Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

机译:用于燃料包壳开发的具有多尺度结构的改性表面的沸腾性能和材料坚固性

获取原文
获取原文并翻译 | 示例
           

摘要

By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-mu m post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding. (C) 2015 Elsevier B.V. All rights reserved.
机译:通过调节多尺度结构的几何特征并通过对纳米颗粒(NPs)的保护层进行热处理,我们改善了临界热通量(CHF),沸腾传热(BHT)和改性表面的机械强度。我们制造了1毫米和100微米的柱结构,并在结构化表面上同时沉积了纳米颗粒,作为纳米级结构化层和保护层,然后评估了CHF和BHT以及改性表面的材料坚固性。在没有NP的结构化表面上,具有紧凑排列的测微杆的表面具有更高的CHF(118%)和BHT(41%)。在具有已沉积NP的结构的表面上,由于沉积的NP层进行毛细泵送,CHF显着增加(172%)。与热处理之前之一相比,热处理提高了涂层的坚固性。特别地,低温烧结使改性表面的硬度增加了140%。 NP涂层机械强度的提高归因于烧结过程中涂层孔隙率的降低。微米级柱结构和NP烧结涂层的结合可以提高先进核燃料包壳的安全性,效率和可靠性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2015年第9期|204-211|共8页
  • 作者单位

    POSTECH, Div Adv Nucl Engn, Pohang 790784, Gyungbuk, South Korea.;

    POSTECH, Div Adv Nucl Engn, Pohang 790784, Gyungbuk, South Korea.;

    Univ Wisconsin, Dept Nucl Engn & Engn Phys, Madison, WI 53706 USA.;

    POSTECH, Dept Mech Engn, Pohang 790784, Gyungbuk, South Korea.;

    POSTECH, Div Adv Nucl Engn, Pohang 790784, Gyungbuk, South Korea.;

    POSTECH, Div Adv Nucl Engn, Pohang 790784, Gyungbuk, South Korea.;

    POSTECH, Div Adv Nucl Engn, Pohang 790784, Gyungbuk, South Korea.;

    Univ Wisconsin, Dept Nucl Engn & Engn Phys, Madison, WI 53706 USA.;

    Univ Wisconsin, Dept Nucl Engn & Engn Phys, Madison, WI 53706 USA.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号