...
首页> 外文期刊>Nuclear Engineering and Design >Large eddy simulation of upward co-current annular boiling flow using an interface tracking method
【24h】

Large eddy simulation of upward co-current annular boiling flow using an interface tracking method

机译:界面跟踪法对并流环形沸腾流动的大涡模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Towards the full understanding of the mechanism of boiling in annular flow regime, a computational fluid dynamics method with interface tracking has been developed. Smagorinsky model is used for the sub-grid scale turbulence, the constant turbulent Prandtl number being used to model the turbulent thermal conductivity. A sharp-interface phase change model is used to simulate heat and mass transfer phenomenon at the liquid-vapor interface. The developed numerical method is applied to a simulation of vertical upward co-current boiling flow in the annular flow regime. The experiment of Barbosa et al. is selected for validation: the mass flow rate is 30 kg/m(2).s with the heat flux 159 kW/m(2) under the system pressure of 1.9 bar. The computed results clearly show how the disturbance waves are generated: the waves are caused from inhomogeneous shear stress acting on the liquid-vapor interface, which is amplified by flow separation in the vapor phase. Subsequently, the interaction between the disturbance waves, the mass transfer and the temperature distribution over the heat-transfer surface is investigated. The temperature gradient in the normal direction to the heat-transfer surface is larger in the thin liquid film than that in the disturbance wave, and consequently, mass transfer rate is also higher there. The higher temperature region is observed underneath the disturbance waves resulting from lower temperature gradient (i.e. heat flux). The computed results imply that the bubble nucleation observed in the experiment may be caused by the higher temperature underneath the disturbance wave on the heat-transfer surface. (C) 2017 Elsevier B.V. All rights reserved.
机译:为了全面了解环形流动状态下的沸腾机理,已经开发了一种具有界面跟踪的计算流体动力学方法。 Smagorinsky模型用于子网格规模湍流,恒定湍流Prandtl数用于建模湍流热导率。锐界面相变模型用于模拟液-汽界面处的传热和传质现象。所开发的数值方法被应用于在环形流动状态下垂直向上并流沸腾流动的模拟。 Barbosa等人的实验。选择进行验证:质量流量为30 kg / m(2).s,在1.9 bar的系统压力下热通量为159 kW / m(2)。计算结果清楚地表明了扰动波是如何产生的:这些波是由作用在液-汽界面上的不均匀剪切应力引起的,该剪切应力通过汽相中的流分离而放大。随后,研究了干扰波,传质和传热表面上温度分布之间的相互作用。液体薄膜中的传热面的法线方向的温度梯度比干扰波中的大,因此传质率也较高。在较低的温度梯度(即热通量)引起的干扰波下方观察到较高的温度区域。计算结果表明,在实验中观察到的气泡形核可能是由于传热表面扰动波下的较高温度引起的。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号