首页> 外文期刊>Nuclear Engineering and Design >Thermo-mechanical behavior of an ablated reactor pressure vessel wall in a Nordic BWR under in-vessel core melt retention
【24h】

Thermo-mechanical behavior of an ablated reactor pressure vessel wall in a Nordic BWR under in-vessel core melt retention

机译:在载体熔体保留下北欧BWR中烧蚀反应器压力容器壁的热力学行为

获取原文
获取原文并翻译 | 示例
       

摘要

The reactor pressure vessel (RPV) of a nuclear reactor is one of the key safety barriers preventing radioactive environmental releases during a severe accident. One of the promising strategies of severe accident management (SAM) is to retain the molten core having continuous decay heat inside the RPV by natural water cooling of the external vessel surface. The feasibility of such a strategy relies on complex safety analyses including accurate prediction of vessel thermo-mechanical behavior which can be assessed by mechanical stresses and strains. In this paper, we present the stress-strain response of an ablated RPV of a Nordic boiling water reactor (BWR) to dynamic thermomechanical loads set by expanding volumetrically heated molten pool inside the RPV cooled by water at the external surface. MELCOR 2.2.9541 severe accident code is used to simulate the in-vessel behavior and provides the input conditions for dedicated structural analysis of the RPV using ANSYS (R) Mechanical APDL 19.2. A creep model of the SA533B1 vessel steel is validated against uniaxial creep tests carried out by INEL (Idaho National Engineering Laboratory) and creep tests performed at CEA (French Alternative Energies and Atomic Energy Commission) as part of the OLHF (OECD Lower Head Failure) Project. Two generic severe accident scenarios are considered: (i) Station Blackout (SBO) and (ii) Station Black-out and Loss-of-coolant Accident (SBO + LOCA). In both scenarios, we found that the RPV has maintained structural integrity considering two failure criteria: stress-based and strain-based.
机译:核反应堆的反应器压力容器(RPV)是在严重事故中防止放射性环境释放的关键安全障碍之一。严重事故管理(SAM)的承诺战略之一是通过外部容器表面的天然水冷却来保留具有在RPV内具有连续衰变热的熔融核心。这种策略的可行性依赖于复杂的安全分析,包括可以通过机械应力和菌株评估的容器热机械行为的精确预测。在本文中,我们介绍了通过在外表面上的水冷却的RPV内部的大容量加热的熔池膨胀,纳阶沸水反应器(BWR)的烧蚀RPV的应力 - 应变响应。 Melcor 2.2.9541严重事故代码用于模拟血管行为,并提供使用ANSYS(R)机械APDL 19.2对RPV进行专用结构分析的输入条件。 SA533B1船钢的蠕变模型对由Inel(Idaho National Engineering)和CeA(法国替代能源和原子能委员会)进行的inel(爱达荷国家工程实验室)和蠕变试验为OLHF(经合组织较低头部故障)进行的蠕变试验项目。考虑了两个通用的严重事故情景:(i)站停电(SBO)和(ii)站黑色和冷却液事故(SBO + LOCA)。在这两种情况下,我们发现RPV考虑了两个故障标准的结构完整性:基于应力和基于应变的基于应变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号