...
首页> 外文期刊>Neurocomputing >Managing the computational cost of model selection and cross-validation in extreme learning machines via Cholesky, SVD, QR and eigen decompositions
【24h】

Managing the computational cost of model selection and cross-validation in extreme learning machines via Cholesky, SVD, QR and eigen decompositions

机译:通过Cholesky,SVD,QR和本征分解在极端学习机中管理模型选择和交叉验证的计算成本

获取原文
获取原文并翻译 | 示例
           

摘要

The typical model selection strategy applied in most Extreme Learning Machine (ELM) papers depends on a k-fold cross-validation and a grid search to select the best pair {L, C} of two adjustable hyper-parameters, namely the number L of hidden ELM nodes and the regularisation parameter, C, that minimizes the validation error. However, by testing only 30 values for L and 30 values for C via 10-fold cross-validation, the learning phase must build 9000 different ELM models, each with a different pair {L, C}. Since these models are not independent from one another, the essence of managing and drastically reducing the computational cost of the ELM model selection relies on matrix decompositions that avoid direct matrix inversion and allow producing reusable matrices during the cross-validations. Still, one can find many matrix decompositions and cross-validation versions that result in several combinations. In this paper, we identify these combinations and analyse them theoretically and experimentally to discover which is the fastest. We compare Singular Value Decomposition (SVD), Eigenvalue Decomposition (EVD), Cholesky decomposition, and QR decomposition, which produce re-usable matrices (orthogonal, Eigen, singular, and upper triangular). These decompositions can be combined with different cross-validation approaches, and we present a direct and thorough comparison of many k-fold cross-validation versions as well as leave-one-out cross-validation. By analysing the computational cost, we demonstrate theoretically and experimentally that while the type of matrix decomposition plays one important role, another equally important role is played by the version of cross-validation. Finally, a scalable and computationally-effective algorithm is presented that significantly reduces computational time. (C) 2018 Elsevier B.V. All rights reserved.
机译:大多数极限学习机(ELM)论文中采用的典型模型选择策略取决于k倍交叉验证和网格搜索以选择两个可调超参数的最佳对{L,C},即L的数量L。隐藏的ELM节点和正则化参数C,可最大程度地减少验证错误。但是,通过10倍交叉验证仅测试L的30个值和C的30个值,学习阶段必须构建9000个不同的ELM模型,每个模型具有不同的对{L,C}。由于这些模型不是彼此独立的,因此管理和大幅度降低ELM模型选择的计算成本的本质取决于矩阵分解,该分解避免了直接矩阵求逆,并允许在交叉验证期间生成可重复使用的矩阵。尽管如此,人们仍然可以找到许多矩阵分解和交叉验证版本,从而产生多种组合。在本文中,我们确定了这些组合,并从理论和实验上对其进行了分析,以找出最快的组合。我们比较奇异值分解(SVD),特征值分解(EVD),Cholesky分解和QR分解,它们产生可重复使用的矩阵(正交,本征,奇异和上三角)。这些分解可以与不同的交叉验证方法结合使用,并且我们对许多k折交叉验证版本以及留一法交叉验证进行了直接而彻底的比较。通过分析计算成本,我们在理论上和实验上证明,虽然矩阵分解的类型起着重要作用,但交叉验证的形式也起着同样重要的作用。最后,提出了一种可扩展且计算有效的算法,该算法大大减少了计算时间。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号