首页> 外文期刊>Neural Networks, IEEE Transactions on >Linear and Nonlinear Projective Nonnegative Matrix Factorization
【24h】

Linear and Nonlinear Projective Nonnegative Matrix Factorization

机译:线性和非线性投影非负矩阵分解

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A variant of nonnegative matrix factorization (NMF) which was proposed earlier is analyzed here. It is called projective nonnegative matrix factorization (PNMF). The new method approximately factorizes a projection matrix, minimizing the reconstruction error, into a positive low-rank matrix and its transpose. The dissimilarity between the original data matrix and its approximation can be measured by the Frobenius matrix norm or the modified Kullback-Leibler divergence. Both measures are minimized by multiplicative update rules, whose convergence is proven for the first time. Enforcing orthonormality to the basic objective is shown to lead to an even more efficient update rule, which is also readily extended to nonlinear cases. The formulation of the PNMF objective is shown to be connected to a variety of existing NMF methods and clustering approaches. In addition, the derivation using Lagrangian multipliers reveals the relation between reconstruction and sparseness. For kernel principal component analysis (PCA) with the binary constraint, useful in graph partitioning problems, the nonlinear kernel PNMF provides a good approximation which outperforms an existing discretization approach. Empirical study on three real-world databases shows that PNMF can achieve the best or close to the best in clustering. The proposed algorithm runs more efficiently than the compared NMF methods, especially for high-dimensional data. Moreover, contrary to the basic NMF, the trained projection matrix can be readily used for newly coming samples and demonstrates good generalization.
机译:在这里分析了较早提出的非负矩阵分解(NMF)的变体。这称为投影非负矩阵分解(PNMF)。新方法将投影矩阵近似分解为正的低秩矩阵及其转置,从而将重构误差最小化。原始数据矩阵与其近似值之间的差异可以通过Frobenius矩阵范数或改进的Kullback-Leibler散度来度量。乘性更新规则将这两种措施减至最少,这是首次证明了其收敛性。证明将正交归于基本目标可以导致更有效的更新规则,该规则也很容易扩展到非线性情况。 PNMF目标的制定已证明与各种现有NMF方法和聚类方法相关。另外,使用拉格朗日乘数的推导揭示了重构与稀疏之间的关系。对于具有二进制约束的内核主成分分析(PCA),它在图形分区问题中很有用,非线性内核PNMF提供了良好的近似值,其性能优于现有的离散化方法。对三个真实数据库的经验研究表明,PNMF可以在集群中达到最佳或接近最佳。与比较的NMF方法相比,该算法的运行效率更高,尤其是对于高维数据。此外,与基本NMF相反,训练后的投影矩阵可以轻松用于新近出现的样本,并具有良好的概括性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号