...
首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Nanophotonic Reservoir Computing With Photonic Crystal Cavities to Generate Periodic Patterns
【24h】

Nanophotonic Reservoir Computing With Photonic Crystal Cavities to Generate Periodic Patterns

机译:纳米光子储层与光子晶体腔的计算以产生周期性的模式。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Reservoir computing (RC) is a technique in machine learning inspired by neural systems. RC has been used successfully to solve complex problems such as signal classification and signal generation. These systems are mainly implemented in software, and thereby they are limited in speed and power efficiency. Several optical and optoelectronic implementations have been demonstrated, in which the system has signals with an amplitude and phase. It is proven that these enrich the dynamics of the system, which is beneficial for the performance. In this paper, we introduce a novel optical architecture based on nanophotonic crystal cavities. This allows us to integrate many neurons on one chip, which, compared with other photonic solutions, closest resembles a classical neural network. Furthermore, the components are passive, which simplifies the design and reduces the power consumption. To assess the performance of this network, we train a photonic network to generate periodic patterns, using an alternative online learning rule called first-order reduced and corrected error. For this, we first train a classical hyperbolic tangent reservoir, but then we vary some of the properties to incorporate typical aspects of a photonics reservoir, such as the use of continuous-time versus discrete-time signals and the use of complex-valued versus real-valued signals. Then, the nanophotonic reservoir is simulated and we explore the role of relevant parameters such as the topology, the phases between the resonators, the number of nodes that are biased and the delay between the resonators. It is important that these parameters are chosen such that no strong self-oscillations occur. Finally, our results show that for a signal generation task a complex-valued, continuous-time nanophotonic reservoir outperforms a classical (i.e., discrete-time, real-valued) leaky hyperbolic tangent reservoir $({rm normalized~roothbox{-}meanhbox{-}square~er- ors}=0.030~{rm versus}~{rm NRMSE}=0.127)$.
机译:储层计算(RC)是受神经系统启发的机器学习技术。 RC已成功用于解决复杂的问题,例如信号分类和信号生成。这些系统主要用软件实现,因此它们的速度和功率效率受到限制。已经证明了几种光学和光电实现,其中系统具有幅度和相位的信号。事实证明,这些丰富了系统的动态特性,这对性能很有帮助。在本文中,我们介绍了一种基于纳米光子晶体腔的新型光学架构。这使我们可以在一个芯片上集成许多神经元,与其他光子解决方案相比,该芯片最类似于经典的神经网络。此外,这些组件是无源的,从而简化了设计并降低了功耗。为了评估该网络的性能,我们使用一种称为一阶减少和校正误差的替代在线学习规则,训练了一个光子网络以生成周期性模式。为此,我们首先训练一个经典的双曲正切储层,然后我们改变一些特性以合并光子学储层的典型方面,例如使用连续时间信号与离散时间信号以及使用复数值信号与储能信号。实值信号。然后,对纳米光子储层进行了模拟,我们探索了相关参数的作用,例如拓扑,谐振器之间的相位,被偏置的节点数以及谐振器之间的延迟。选择这些参数以确保不会发生强烈的自激振荡很重要。最后,我们的结果表明,对于信号生成任务而言,复值连续时间纳米光子储层的性能优于经典(即离散时间,实值)泄漏双曲线正切储层$({rm normalized〜roothbox {-} meanhbox {-} square_ors} = 0.030〜{rm vs}〜{rm NRMSE} = 0.127)$。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号