首页> 外文期刊>Neural computation >Controlling Complexity of Cerebral Cortex Simulations-Ⅰ: CxSystem, a Flexible Cortical Simulation Framework
【24h】

Controlling Complexity of Cerebral Cortex Simulations-Ⅰ: CxSystem, a Flexible Cortical Simulation Framework

机译:控制大脑皮层仿真的复杂性-Ⅰ:CxSystem,一个灵活的皮层仿真框架

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Simulation of the cerebral cortex requires a combination of extensive domain-specific knowledge and efficient software. However, when the complexity of the biological system is combined with that of the software, the likelihood of coding errors increases, which slows model adjustments. Moreover, few life scientists are familiar with software engineering and would benefit from simplicity in form of a high-level abstraction of the biological model. Our primary aim was to build a scalable cortical simulation framework for personal computers. We isolated an adjustable part of the domain-specific knowledge from the software. Next, we designed a framework that reads the model parameters from comma-separated value files and creates the necessary code for Brian2 model simulation. This separation allows rapid exploration of complex cortical circuits while decreasing the likelihood of coding errors and automatically using efficient hardware devices. Next, we tested the system on a simplified version of the neocortical microcircuit proposed by Markram and colleagues (2015). Our results indicate that the framework can efficiently perform simulations using Python, C++, and GPU devices. The most efficient device varied with computer hardware and the duration and scale of the simulated system. The speed of Brian2 was retained despite an overlying layer of software. However, the Python and C++ devices inherited the single core limitation of Brian2. The CxSystem framework supports exploration of complex models on personal computers and thus has the potential to facilitate research on cortical networks and systems.
机译:大脑皮层的仿真需要广泛的领域特定知识和高效软件的结合。然而,当生物系统的复杂性与软件的复杂性相结合时,编码错误的可能性增加,这会减慢模型调整的速度。此外,很少有生命科学家熟悉软件工程,并且会从生物学模型的高级抽象形式的简化中受益。我们的主要目标是为个人计算机构建可扩展的皮质仿真框架。我们从软件中分离出了特定领域知识的可调整部分。接下来,我们设计了一个框架,该框架从逗号分隔的值文件中读取模型参数,并为Brian2模型仿真创建必要的代码。这种分离允许快速探索复杂的皮质电路,同时降低编码错误的可能性,并自动使用高效的硬件设备。接下来,我们在Markram及其同事(2015)提出的简化版本的新皮层微电路上测试了该系统。我们的结果表明,该框架可以使用Python,C ++和GPU设备有效地执行仿真。最有效的设备随计算机硬件以及模拟系统的持续时间和规模而变化。尽管有一层软件,但Brian2的速度得以保留。但是,Python和C ++设备继承了Brian2的单核限制。 CxSystem框架支持在个人计算机上探索复杂的模型,因此具有促进对皮质网络和系统进行研究的潜力。

著录项

  • 来源
    《Neural computation》 |2019年第6期|1048-1065|共18页
  • 作者单位

    Univ Helsinki, Clin Neurosci, Neurol, Helsinki 00029, Finland|Helsinki Univ Hosp, Helsinki 00029, Finland|Indiana Univ, Sch Informat Comp & Engn, Bloomington, IN 47408 USA;

    Univ Helsinki, Clin Neurosci, Neurol, Helsinki 00029, Finland|Helsinki Univ Hosp, Helsinki 00029, Finland;

    Univ Helsinki, Clin Neurosci, Neurol, Helsinki 00029, Finland|Helsinki Univ Hosp, Helsinki 00029, Finland;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号