...
首页> 外文期刊>Neural computation >Attention-gated reinforcement learning of internal representations for classification
【24h】

Attention-gated reinforcement learning of internal representations for classification

机译:对内部表示的注意门强化学习以进行分类

获取原文
获取原文并翻译 | 示例
           

摘要

Animal learning is associated with changes in the efficacy of connections between neurons. The rules that govern this plasticity can be tested in neural networks. Rules that train neural networks to map stimuli onto outputs are given by supervised learning and reinforcement learning theories. Supervised learning is efficient but biologically implausible. In contrast, reinforcement learning is biologically plausible but comparatively inefficient. It lacks a mechanism that can identify units at early processing levels that play a decisive role in the stimulus-response mapping. Here we show that this so-called credit assignment problem can be solved by a new role for attention in learning. There are two factors in our new learning scheme that determine synaptic plasticity: (1) a reinforcement signal that is homogeneous across the network and depends on the amount of reward obtained after a trial, and (2) an attentional feedback signal from the output layer that limits plasticity to those units at earlier processing levels that are crucial for the stimulus-response mapping. The new scheme is called attention-gated reinforcement learning (AGREL). We show that it is as efficient as supervised learning in classification tasks. AGREL is biologically realistic and integrates the role of feedback connections, attention effects, synaptic plasticity, and reinforcement learning signals into a coherent framework.
机译:动物学习与神经元之间连接功效的变化有关。可以在神经网络中测试控制这种可塑性的规则。监督学习和强化学习理论给出了训练神经网络将刺激映射到输出的规则。监督学习是有效的,但生物学上是不可行的。相反,强化学习在生物学上是合理的,但效率较低。它缺乏一种机制,可以识别早期处理水平的单元,这些单元在刺激反应映射中起着决定性的作用。在这里我们表明,可以通过在学习中注意的新角色来解决这个所谓的学分分配问题。在我们的新学习方案中,有两个因素决定了突触可塑性:(1)增强信号在网络中是同质的,并且取决于试验后获得的奖励数量;(2)来自输出层的注意反馈信号这将可塑性限制在对刺激响应映射至关重要的早期处理级别的那些单元上。新方案称为注意门强化学习(AGREL)。我们证明了在分类任务中它与监督学习一样有效。 AGREL具有生物学上的现实意义,并将反馈连接,注意力作用,突触可塑性和强化学习信号的作用整合到一个连贯的框架中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号