...
首页> 外文期刊>Neural computation >Identification of Stable Spike-Timing-Dependent Plasticity from Spiking Activity with Generalized Multilinear Modeling
【24h】

Identification of Stable Spike-Timing-Dependent Plasticity from Spiking Activity with Generalized Multilinear Modeling

机译:广义多线性建模从尖峰活动中识别稳定的基于尖峰时间的可塑性

获取原文
获取原文并翻译 | 示例
           

摘要

Characterization of long-term activity-dependent plasticity from behaviorally driven spiking activity is important for understanding the underlying mechanisms of learning and memory. In this letter, we present a computational framework for quantifying spike-timing-dependent plasticity (STDP) during behavior by identifying a functional plasticity rule solely from spiking activity. First, we formulate a flexible point-process spiking neuron model structure with STDP, which includes functions that characterize the stationary and plastic properties of the neuron. The STDP model includes a novel function for prolonged plasticity induction, as well as a more typical function for synaptic weight change based on the relative timing of input-output spike pairs. Consideration for system stability is incorporated with weight-dependent synaptic modification. Next, we formalize an estimation technique using a generalized multilinear model (GMLM) structure with basis function expansion. The weight-dependent synaptic modification adds a nonlinearity to the model, which is addressed with an iterative unconstrained optimization approach. Finally, we demonstrate successful model estimation on simulated spiking data and show that all model functions can be estimated accurately with this method across a variety of simulation parameters, such as number of inputs, output firing rate, input firing type, and simulation time. Since this approach requires only naturally generated spikes, it can be readily applied to behaving animal studies to characterize the underlying mechanisms of learning and memory.
机译:从行为驱动的尖峰活动中长期依赖于活动的可塑性的表征对于理解学习和记忆的潜在机制很重要。在这封信中,我们提出了一个计算框架,用于通过仅从峰值活动中识别功能可塑性规则来量化行为过程中依赖于时序的可塑性(STDP)。首先,我们用STDP制定了一个灵活的点过程加标神经元模型结构,该结构包括表征神经元固定和塑性特性的功能。 STDP模型包括一个用于延长可塑性诱导的新功能,以及一个基于输入-输出尖峰对的相对时序的突触重量变化的更典型功能。系统稳定性的考虑因素与重量依赖性突触修饰结合在一起。接下来,我们使用带有基函数扩展的广义多线性模型(GMLM)结构来形式化估计技术。权重依赖的突触修改为模型增加了非线性,可通过迭代无约束优化方法解决。最后,我们演示了对模拟峰值数据的成功模型估计,并表明可以使用此方法在各种模拟参数(例如输入数量,输出点火率,输入点火类型和仿真时间)上准确估算所有模型功能。由于这种方法仅需要自然产生的尖峰,因此可以很容易地应用于行为动物研究,以表征学习和记忆的潜在机制。

著录项

  • 来源
    《Neural computation》 |2016年第11期|2320-2351|共32页
  • 作者单位

    Department of Biomedical Engineering University of Southern California Los Angeles CA 90089 U.S.A. bsrobins@usc.edu;

    Department of Biomedical Engineering University of Southern California Los Angeles CA 90089 U.S.A. berger@usc.edu;

    Department of Biomedical Engineering University of Southern California Los Angeles CA 90089 U.S.A. dsong@usc.edu;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号