首页> 外文期刊>Nature >Roton pair density wave in a strong-coupling kagome superconductor
【24h】

Roton pair density wave in a strong-coupling kagome superconductor

机译:旋转对密度波在一个强耦合的kagome超导体中

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The transition metal kagome lattice materials host frustrated, correlated and topological quantum states of matter(1-9). Recently, a new family of vanadium-based kagome metals, AV(3)Sb(5) (A = K, Rb or Cs), with topological band structures has been discovered(10,11). These layered compounds are nonmagnetic and undergo charge density wave transitions before developing superconductivity at low temperatures(11-19). Here we report the observation of unconventional superconductivity and a pair density wave (PDW) in CsV3Sb5 using scanning tunnelling microscope/spectroscopy and Josephson scanning tunnelling spectroscopy. We find that CsV3Sb5 exhibits a V-shaped pairing gap Delta similar to 0.5 meV and is a strong-coupling superconductor (2 Delta/k(B)T(c) - 5) that coexists with 4a(0) unidirectional and 2a(0) x 2a(0) charge order. Remarkably, we discover a 3Q PDW accompanied by bidirectional 4a(0)/3 spatial modulations of the superconducting gap, coherence peak and gap depth in the tunnelling conductance. We term this novel quantum state a roton PDW associated with an underlying vortex-antivortex lattice that can account for the observed conductance modulations. Probing the electronic states in the vortex halo in an applied magnetic field, in strong field that suppresses superconductivity and in zero field above T-c, reveals that the PDW is a primary state responsible for an emergent pseudogap and intertwined electronic order. Our findings show striking analogies and distinctions to the phenomenology of high-T-c cuprate superconductors, and provide groundwork for understanding the microscopic origin of correlated electronic states and superconductivity in vanadium-based kagome metals.
机译:过渡金属kagome格子材料寄出令人沮丧,相关和拓扑量子的物质(1-9)。最近,已经发现了一种新的基于钒的kagome金属,AV(3)Sb(5)(A = K,RB或CS),已经发现了拓扑带结构(10,11)。这些层状化合物是非磁性的,并且在低温下在发育超导性之前进行的非磁性和经历电荷密度波转变。在这里,我们通过扫描隧道显微镜/光谱和约瑟夫森扫描隧道光谱观察CSV3SB5中的非传统超导性和对密度波(PDW)的观察。我们发现CSV3SB5表现出类似于0.5meV的V形配对间隙δ,是一种强偶联超导体(2Δ/ k(b)t(c) - 5),其与4a(0)单向和2a(0)共存)x 2a(0)充电顺序。值得注意的是,在隧道电导中发现由双向4A(0)/ 3空间调制的三Q PDW伴随着双向4A(0)/ 3空间调制。我们术语术语这种新型量子状态是与底层的涡旋 - 反射晶格相关联的旋转PDW,其可以考虑观察到的电导调制。在施加超导电性和零场上的施加磁场中探测涡旋光环中的电子状态,抑制超导和零场,揭示了PDW是对紧急伪映射和交织电子顺序负责的主要状态。我们的研究结果显示了高T-C黄铜超导体的现象学的醒目类比和区别,并为了解基于钒的Kagome金属中相关电子状态和超导电性的微观起源提供了基础。

著录项

  • 来源
    《Nature》 |2021年第7884期|222-228|共7页
  • 作者单位

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China|Univ Chinese Acad Sci CAS Ctr Excellence Topol Quantum Computat Beijing Peoples R China|Songshan Lake Mat Lab Dongguan Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China|Univ Chinese Acad Sci CAS Ctr Excellence Topol Quantum Computat Beijing Peoples R China|Songshan Lake Mat Lab Dongguan Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China|Univ Chinese Acad Sci CAS Ctr Excellence Topol Quantum Computat Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Renmin Univ China Beijing Key Lab Optoelect Funct Mat Micronano Dev Dept Phys Beijing Peoples R China;

    Renmin Univ China Beijing Key Lab Optoelect Funct Mat Micronano Dev Dept Phys Beijing Peoples R China;

    Renmin Univ China Beijing Key Lab Optoelect Funct Mat Micronano Dev Dept Phys Beijing Peoples R China;

    Renmin Univ China Beijing Key Lab Optoelect Funct Mat Micronano Dev Dept Phys Beijing Peoples R China;

    Weizmann Inst Sci Dept Condensed Matter Phys Rehovot Israel;

    Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China|Univ Chinese Acad Sci CAS Ctr Excellence Topol Quantum Computat Beijing Peoples R China|Chinese Acad Sci Inst Theoret Phys CAS Key Lab Theoret Phys Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China;

    Boston Coll Dept Phys Chestnut Hill MA 02167 USA;

    Chinese Acad Sci Beijing Natl Ctr Condensed Matter Phys Beijing Peoples R China|Chinese Acad Sci Inst Phys Beijing Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing Peoples R China|Univ Chinese Acad Sci CAS Ctr Excellence Topol Quantum Computat Beijing Peoples R China|Songshan Lake Mat Lab Dongguan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号