...
首页> 外文期刊>Nature >An optical lattice with sound
【24h】

An optical lattice with sound

机译:具有声音的光学格

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Quantized sound waves-phonons-govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (for example, by binding electrons into superconducting Cooper pairs)(1-3). The physics of lattice phonons and elasticity is absent in simulators of quantum solids constructed of neutral atoms in periodic light potentials: unlike real solids, traditional optical lattices are silent because they are infinitely stiff(4). Optical-lattice realizations of crystals therefore lack some of the central dynamical degrees of freedom that determine the low-temperature properties of real materials. Here, we create an optical lattice with phonon modes using a Bose-Einstein condensate (BEC) coupled to a confocal optical resonator. Playing the role of an active quantum gas microscope, the multimode cavity QED system both images the phonons and induces the crystallization that supports phonons via short-range, photon-mediated atom-atom interactions. Dynamical susceptibility measurements reveal the phonon dispersion relation, showing that these collective excitations exhibit a sound speed dependent on the BEC-photon coupling strength. Our results pave the way for exploring the rich physics of elasticity in quantum solids, ranging from quantum melting transitions(5) to exotic 'fractonic' topological defects(6) in the quantum regime.An optical lattice for trapping a Bose-Einstein condensate reported here includes photon-mediated atom-atom interactions that replicate acoustic modes in real crystals.
机译:量化声波 - 声子 - 控制晶体材料的弹性响应,并且还在确定其热力学性能和电响应(例如,通过将电子结合到超导Cooper对中)(1-3)来发挥积分部分。在周期性光电位的中性原子构建的量子固体的模拟器中,晶格声子和弹性的物理学不存在:与真固体不同,传统的光学格子是沉默的,因为它们是无限的(4)。因此,晶体的光学晶格实现缺乏确定真实材料的低温性能的中央动态自由度。这里,我们使用耦合到共聚焦光学谐振器的Bose-Einstein冷凝物(BEC)来创建具有声子模式的光学晶格。播放活性量子气体显微镜的作用,多模腔QED系统均图像均通过短​​程,光子介导的原子 - 原子相互作用诱导支持声子的结晶。动态易感性测量揭示了声子分散关系,表明这些集体激励表现出依赖于BEC光子耦合强度的声速。我们的结果铺平了探索量子固体中富含弹性的浓性物理的方法,从量子熔化过渡(5)到Quantum制度中的异国情调的“分泌物”拓扑缺陷(6)。用于捕获Bose-Einstein冷凝物的光学晶格这里包括光子介导的原子原子相互作用,其在真实晶体中复制声学模式。

著录项

  • 来源
    《Nature》 |2021年第7884期|211-215|共5页
  • 作者单位

    Stanford Univ Dept Phys Stanford CA 94305 USA|Stanford Univ EL Ginzton Lab Stanford CA 94305 USA;

    Stanford Univ Dept Phys Stanford CA 94305 USA|Stanford Univ EL Ginzton Lab Stanford CA 94305 USA;

    Stanford Univ EL Ginzton Lab Stanford CA 94305 USA|Stanford Univ Dept Appl Phys Stanford CA 94305 USA;

    Penn State Univ Dept Phys 104 Davey Lab University Pk PA 16802 USA;

    Univ St Andrews SUPA Sch Phys & Astron St Andrews Fife Scotland;

    Stanford Univ Dept Phys Stanford CA 94305 USA|Stanford Univ EL Ginzton Lab Stanford CA 94305 USA|Stanford Univ Dept Appl Phys Stanford CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号