首页> 外文期刊>Nature >Thermochemical lithosphere differentiation and the origin of cratonic mantle
【24h】

Thermochemical lithosphere differentiation and the origin of cratonic mantle

机译:热化学岩石圈分化与克拉氏罩的起源

获取原文
获取原文并翻译 | 示例
       

摘要

Cratons record the early history of continental lithosphere formation, yet how they became the most enduring part of the lithosphere on Earth remains unknown(1). Here we propose a mechanism for the formation of large volumes of melt-depleted cratonic lithospheric mantle (CLM) and its evolution to stable cratons. Numerical models show large decompression melting of a hot, early Earth mantle beneath a stretching lithosphere, where melt extraction leaves large volumes of depleted mantle at depth. The dehydrated, stiffer mantle resists further deformation, forcing strain migration and cooling, thereby assimilating depleted mantle into the lithosphere. The negative feedback between strain localization and stiffening sustains long-term diffused extension and emplacement of large amounts of depleted CLM. The formation of CLM at low pressure and its deeper re-equilibration reproduces the evolution of Archaean lithosphere constrained by depth-temperature conditions(1,2), whereas large degrees of depletion(3,4) and melt volumes(5) in Archaean cratons are best matched by models with lower lithospheric strength. Under these conditions, which are otherwise viable for plate tectonics(6,7), thermochemical differentiation effectively prevents yielding and formation of margins: rifting and lithosphere subduction are short lived and embedded in the cooling CLM as relict structures, reproducing the recycling and reworking environments that are found in Archaean cratons(8,9). Although they undergo major melting and extensive recycling during an early stage lasting approximately 500 million years, the modelled lithospheres progressively differentiate and stabilize, and then recycling and reworking become episodic. Early major melting and recycling events explain the production and loss of primordial Hadean lithosphere and crust(10), whereas later stabilization and episodic reworking provides a context for the creation of continental cratons in the Archaean era(4,8).A model is proposed for the origin of cratonic lithospheric mantle in which rifting and melting in the hot, early Earth mantle leave behind large volumes of stiffer, depleted mantle.
机译:Cratons记录了大陆岩石圈形成的早期历史,但它们是如何成为地球上岩石圈最持久的部分遗骸(1)。在这里,我们提出了一种形成大量的熔融耗尽的裂隙性岩形裂缝(CLM)的机制及其进化到稳定的碎屑。数值模型显示出伸展岩石圈下方的热,早期地球罩的大量减压熔化,其中熔体提取留下大量的耗尽型壁龛。脱水的脱脂碎屑抗蚀剂进一步变形,迫使应变迁移和冷却,从而使耗尽的搭腔融入岩石圈。应变定位和加强之间的负反馈维持长期扩散延伸和大量耗尽的CLM的施加。在低压下形成CLM及其更深的重新平衡再现由深度温度条件(1,2)的古代岩石圈的演变(1,2),而亚基粪群中大的耗尽程度(3,4)和熔体量(5)最符合岩石型强度较低的模型。在这些条件下,对于板构造(6,7)而言,热化学分化有效地防止了屈服和形成边缘:裂化和岩石圈俯冲短居住并嵌入冷却CLM中,作为依赖结构,再现回收和再加工环境,再现回收和再加工环境这是在古代克拉托森(8,9)中的发现。虽然在持续大约5亿年的早期阶段,它们经历了重大熔化和广泛的回收,但模拟的岩石师逐渐区分和稳定,然后回收和重新加工成为情节。早期的主要融化和回收事件解释了原始哈特岩石圈和地壳的生产和丧失(10),而后来的稳定和剧目的重新加工为建立了大陆克拉多斯(4,8).A模型提供了欧洲脆弱的背景对于裂隙和熔化的裂隙性岩性地幔的起源,早期地球地幔留下大量的脱脂件枯竭的地幔。

著录项

  • 来源
    《Nature》 |2020年第7836期|89-94|共6页
  • 作者单位

    Monash Univ Sch Earth Atmosphere & Environm Clayton Vic Australia;

    Monash Univ Sch Earth Atmosphere & Environm Clayton Vic Australia;

    Monash Univ Sch Earth Atmosphere & Environm Clayton Vic Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号