首页> 外文期刊>Nature >North Atlantic climate far more predictable than models imply
【24h】

North Atlantic climate far more predictable than models imply

机译:北大西洋气候比模特更具预测

获取原文
获取原文并翻译 | 示例
           

摘要

Current models are too noisy to predict climate usefully on decadal timescales, but two-stage post-processing of model outputs greatly improves predictions of decadal variations in North Atlantic winter climate.Quantifying signals and uncertainties in climate models is essential for the detection, attribution, prediction and projection of climate change(1-3). Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain(4). This leads to low confidence in regional projections, especially for precipitation, over the coming decades(5,6). The chaotic nature of the climate system(7-9)may also mean that signal uncertainties are largely irreducible. However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate model predictions of the past six decades and show that decadal variations in North Atlantic winter climate are highly predictable, despite a lack of agreement between individual model simulations and the poor predictive ability of raw model outputs. Crucially, current models underestimate the predictable signal (the predictable fraction of the total variability) of the North Atlantic Oscillation (the leading mode of variability in North Atlantic atmospheric circulation) by an order of magnitude. Consequently, compared to perfect models, 100 times as many ensemble members are needed in current models to extract this signal, and its effects on the climate are underestimated relative to other factors. To address these limitations, we implement a two-stage post-processing technique. We first adjust the variance of the ensemble-mean North Atlantic Oscillation forecast to match the observed variance of the predictable signal. We then select and use only the ensemble members with a North Atlantic Oscillation sufficiently close to the variance-adjusted ensemble-mean forecast North Atlantic Oscillation. This approach greatly improves decadal predictions of winter climate for Europe and eastern North America. Predictions of Atlantic multidecadal variability are also improved, suggesting that the North Atlantic Oscillation is not driven solely by Atlantic multidecadal variability. Our results highlight the need to understand why the signal-to-noise ratio is too small in current climate models(10), and the extent to which correcting this model error would reduce uncertainties in regional climate change projections on timescales beyond a decade.
机译:目前的模型太嘈杂,无法在Decadal Timescalles上预测气候,但模型产出的两阶段后处理大大提高了北大西洋冬季气候的二等变化的预测。Quantify信号和气候模型的不确定性对于检测,归因,气候变化的预测和投影(1-3)。虽然模型间协议对于大型温度信号很高,但大气循环的动态变化非常不确定(4)。这导致在未来几十年(5,6)的区域预测对区域预测的信心低下(5,6)。气候系统的混沌性质(7-9)也可能意味着信号不确定性主要是不可缩短的。然而,在进一步观察到可用之前,难以验证气候预测。在这里,我们评估了过去六十年的回顾性气候模型预测,并表明,尽管各个模型模拟与原料模型产出的预测能力较差之间缺乏一致性,但北大西洋冬季气候的二等冬季气候变化是高度可预测的。至关重要的是,目前的模型低估了北大西洋振荡的可预测信号(北大西洋大气循环中的最可变性模式)的可预测信号(北大洋大气循环中的主要变化模式)。因此,与完美模型相比,在当前模型中需要许多集合成员的100倍以提取该信号,而其对气候的影响相对于其他因素低估。为了解决这些限制,我们实施了两级后处理技术。我们首先调整集合式北大西洋振荡预测的方差,以匹配观察到的可预测信号的方差。然后,我们只选择和使用具有北大洋振荡的集合成员,该成员足够接近差异调整的集合平均预测北大西洋振荡。这种方法大大提高了欧洲和北美洲冬季气候的二等程度预测。大西洋多型变异性的预测也得到了改善,表明北大西洋振荡不是由大西洋多型变异性驱动的。我们的结果强调了了解为什么当前气候模型(10)中信噪比太小,以及纠正此模型错误的程度将减少区域气候变化预测的不确定性,超出十年的时间表。

著录项

  • 来源
    《Nature》 |2020年第7818期|796-800|共5页
  • 作者单位

    Met Off Hadley Ctr Exeter Devon England;

    Met Off Hadley Ctr Exeter Devon England|Exeter Univ Coll Engn Math & Phys Sci Exeter Devon England;

    Met Off Hadley Ctr Exeter Devon England;

    Ctr Euro Mediterraneo Cambiamenti Climat Bologna Italy;

    Ctr Euro Mediterraneo Cambiamenti Climat Bologna Italy;

    Univ Bergen Geophys Inst Bergen Norway|Bjerknes Ctr Climate Res Bergen Norway;

    Barcelona Supercomp Ctr Barcelona Spain;

    Sorbonne Univ Inst Pierre Simon Laplace IPSL LOCEAN Lab Paris France;

    Barcelona Supercomp Ctr Barcelona Spain;

    Univ Bergen Geophys Inst Bergen Norway|Bjerknes Ctr Climate Res Bergen Norway|Nansen Environm & Remote Sensing Ctr Bergen Norway;

    Natl Ctr Atmospher Res POB 3000 Boulder CO 80307 USA;

    Princeton Univ Geophys Fluid Dynam Lab Princeton NJ 08544 USA;

    Barcelona Supercomp Ctr Barcelona Spain|Inst Catalana Recerca & Estudis Avancats ICREA Barcelona Spain;

    Met Off Hadley Ctr Exeter Devon England;

    Sorbonne Univ Inst Pierre Simon Laplace IPSL LOCEAN Lab Paris France;

    Sorbonne Univ Inst Pierre Simon Laplace IPSL LOCEAN Lab Paris France;

    Met Off Hadley Ctr Exeter Devon England;

    Univ Bergen Geophys Inst Bergen Norway|Bjerknes Ctr Climate Res Bergen Norway|Nansen Environm & Remote Sensing Ctr Bergen Norway;

    Environm & Climate Change Canada Canadian Ctr Climate Modelling & Anal Victoria BC Canada;

    Univ Tokyo Atmosphere & Ocean Res Inst Kashiwa Chiba Japan;

    Environm & Climate Change Canada Canadian Ctr Climate Modelling & Anal Victoria BC Canada;

    Sorbonne Univ Inst Pierre Simon Laplace IPSL LOCEAN Lab Paris France;

    Kyushu Univ Dept Earth & Planetary Sci Fukuoka Fukuoka Japan|Japan Agcy Marine Earth Sci & Technol Yokohama Kanagawa Japan;

    Max Planck Inst Meteorol Hamburg Germany|Univ Hamburg Reg Comp Ctr Hamburg Germany;

    Univ Reading Dept Meteorol Natl Ctr Atmospher Sci Reading Berks England;

    Max Planck Inst Meteorol Hamburg Germany;

    Ctr Euro Mediterraneo Cambiamenti Climat Bologna Italy;

    Barcelona Supercomp Ctr Barcelona Spain;

    Deutsch Wetterdienst Hamburg Germany;

    Max Planck Inst Meteorol Hamburg Germany|Deutsch Wetterdienst Hamburg Germany;

    Univ Reading Dept Meteorol Natl Ctr Atmospher Sci Reading Berks England;

    Ctr Euro Mediterraneo Cambiamenti Climat Bologna Italy;

    Environm & Climate Change Canada Canadian Ctr Climate Modelling & Anal Victoria BC Canada;

    Univ Bordeaux CNRS EPOC Pessac France;

    Nansen Environm & Remote Sensing Ctr Bergen Norway;

    Barcelona Supercomp Ctr Barcelona Spain;

    Natl Ctr Atmospher Res POB 3000 Boulder CO 80307 USA;

    Princeton Univ Geophys Fluid Dynam Lab Princeton NJ 08544 USA;

    Princeton Univ Geophys Fluid Dynam Lab Princeton NJ 08544 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号