...
首页> 外文期刊>Nature >MuItilayered mechanisms ensure that short chromosomes recombine in meiosis
【24h】

MuItilayered mechanisms ensure that short chromosomes recombine in meiosis

机译:muitilayered机制确保短染色体在减数分裂中重组

获取原文
获取原文并翻译 | 示例

摘要

Abstract In most species, homologous chromosomes must recombine in order to segregate accurately during meiosis1. Because small chromosomes would be at risk of missegregation if recombination were randomly distributed, the double-strand breaks (DSBs) that initiate recombination are not located arbitrarily2. How the nonrandomness of DSB distributions is controlled is not understood, although several pathways are known to regulate the timing, location and number of DSBs. Meiotic DSBs are generated by Spo11 and accessory DSB proteins, including Rec114 and Mer2, which assemble on chromosomes3–7 and are nearly universal in eukaryotes8–11. Here we demonstrate how Saccharomyces cerevisiae integrates multiple temporally distinct pathways to regulate the binding of Rec114 and Mer2 to chromosomes, thereby controlling the duration of a DSB-competent state. The engagement of homologous chromosomes with each other regulates the dissociation of Rec114 and Mer2 later in prophase I, whereas the timing of replication and the proximity to centromeres or telomeres influence the accumulation of Rec114 and Mer2 early in prophase I. Another early mechanism enhances the binding of Rec114 and Mer2 specifically on the shortest chromosomes, and is subject to selection pressure to maintain the hyperrecombinogenic properties of these chromosomes. Thus, the karyotype of an organism and its risk of meiotic missegregation influence the shape and evolution of its recombination landscape. Our results provide a cohesive view of a multifaceted and evolutionarily constrained system that allocates DSBs to all pairs of homologous chromosomes.
机译:摘要在大多数物种中,同源染色体必须重组,以便在MeIosis1期间精确地分离。因为如果随机分布重组,则小染色体存在错误的风险,因此引发重组的双链断裂(DSB)不逐个定位2。虽然已知几种通路来调节DSB的定时,位置和数量,但是如何控制DSB分布的非粗糙度。减数分裂DSB由Spo11和附带DSB蛋白生成,包括REC114和MER2,其在染色体3-7上组装,并且在Eukaryotes8-11中几乎是通用的。在这里,我们证明了酿酒酵母的酿酒酵母如何整合多个时间上不同的途径以调节REC114和MER2的结合,从而控制DSB主管状态的持续时间。彼此的同源染色体的接合调节REC114和MER2的解离在预先在预壳I中,而复制的定时和邻接对焦粒子或端粒的同步会影响REC114和MER2在PrainHase I中的积累。另一种早期机制增强了结合特别是在最短染色体上的REC114和MER2,并且受到选择压力以保持这些染色体的高凝集性质。因此,生物体的核型及其减少误导的风险影响其重组景观的形状和演化。我们的结果提供了多方面和进化的受管制系统的凝聚力看,将DSB分配给所有同源染色体对。

著录项

  • 来源
    《Nature 》 |2020年第7810期| 124-128| 共5页
  • 作者单位

    Molecular Biology Program Memorial Sloan Kettering Cancer Center New York NY USA;

    Molecular Biology Program Memorial Sloan Kettering Cancer Center New York NY USA Louis V. Gerstner Jr. Graduate School of Biomedical Sciences Memorial Sloan Kettering Cancer Center New York NY USA;

    Molecular Biology Program Memorial Sloan Kettering Cancer Center New York NY USA Weill Graduate School of Medical Sciences Cornell University New York NY USA;

    Molecular Biology Program Memorial Sloan Kettering Cancer Center New York NY USA;

    Molecular Biology Program Memorial Sloan Kettering Cancer Center New York NY USA;

    Molecular Biology Program Memorial Sloan Kettering Cancer Center New York NY USA.Louis V. Gerstner Jr. Graduate School of Biomedical Sciences Memorial Sloan Kettering Cancer Center New York NY USA.Weill Graduate School of Medical Sciences Cornell University New York NY USA.Howard Hughes Medical Institute Memorial Sloan Kettering Cancer Center New York NY USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号