首页> 外文期刊>Nature >Optical Fourier surfaces
【24h】

Optical Fourier surfaces

机译:光学傅立叶表面

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract Gratings1 and holograms2 use patterned surfaces to tailor optical signals by diffraction. Despite their long history, variants with remarkable functionalities continue to be developed3,4. Further advances could exploit Fourier optics5, which specifies the surface pattern that generates a desired diffracted output through its Fourier transform. To shape the optical wavefront, the ideal surface profile should contain a precise sum of sinusoidal waves, each with a well defined amplitude, spatial frequency and phase. However, because fabrication techniques typically yield profiles with at most a few depth levels, complex ‘wavy’ surfaces cannot be obtained, limiting the straightforward mathematical design and implementation of sophisticated diffractive optics. Here we present a simple yet powerful approach to eliminate this design–fabrication mismatch by demonstrating optical surfaces that contain an arbitrary number of specified sinusoids. We combine thermal scanning-probe lithography6–8 and templating9 to create periodic and aperiodic surface patterns with continuous depth control and sub-wavelength spatial resolution. Multicomponent linear gratings allow precise manipulation of electromagnetic signals through Fourier-spectrum engineering10. Consequently, we overcome a previous limitation in photonics by creating an ultrathin grating that simultaneously couples red, green and blue light at the same angle of incidence. More broadly, we analytically design and accurately replicate intricate two-dimensional moiré patterns11,12, quasicrystals13,14 and holograms15,16, demonstrating a variety of previously unattainable diffractive surfaces. This approach may find application in optical devices (biosensors17, lasers18,19, metasurfaces4 and modulators20) and emerging areas in photonics (topological structures21, transformation optics22 and valleytronics23).
机译:摘要Glatings1和全息图2使用图案化表面来衍射来定制光学信号。尽管历史悠久,但具有显着功能的变体仍在开发3,4。进一步的进步可以利用傅里叶OPTICS5,其指定通过其傅里叶变换产生所需衍射输出的表面图案。为了塑造光学波前,理想的表面轮廓应包含精确的正弦波和,每个幅度具有良好的限定幅度,空间频率和相位。然而,因为制造技术通常产生具有大多数深度水平的屈服曲线,因此不能获得复杂的“波浪”表面,限制了精密衍射光学器件的直接数学设计和实现。在这里,我们提出了一种简单而强大的方法,通过演示包含任意数量的指定正弦曲线的光学表面来消除这种设计制造不匹配。我们将热扫描探​​针光刻6-8和模板9组合在一起,以产生连续深度控制和子波长空间分辨率的周期性和非周期性表面图案。多组分线性光栅允许通过傅里叶频谱工程精确地操纵电磁信号。因此,我们通过在同一入射角耦合的超薄光栅,通过产生同时耦合红色,绿色和蓝光的超薄光栅来克服先前的光子。更广泛地,我们分析和准确地复制复杂的二维Moiré图案11,12,QuasiCrystals13,14和全息图15,16,证明了各种预先达到的衍射表面。该方法可以在光学装置(Biosensors17,激光器18,19,Metasurfaces4和调制器20)中应用于光子学(拓扑结构21,变换OPTICS22和ValleyTronics23)中的应用中的应用。

著录项

  • 来源
    《Nature》 |2020年第7813期|506-510|共5页
  • 作者单位

    Optical Materials Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Zurich Switzerland;

    Optical Materials Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Zurich Switzerland;

    Optical Materials Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Zurich Switzerland|Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands;

    Optical Materials Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Zurich Switzerland;

    Heidelberg Instruments Nano/SwissLitho Zurich Switzerland;

    Heidelberg Instruments Nano/SwissLitho Zurich Switzerland;

    Optical Materials Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Zurich Switzerland;

    Optical Materials Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Zurich Switzerland|Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands;

    Optical Materials Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Zurich Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号