首页> 外文期刊>Nature >Signatures of tunable superconductivity in a trilayer graphene moire superlattice
【24h】

Signatures of tunable superconductivity in a trilayer graphene moire superlattice

机译:三层石墨烯莫尔超晶格中可调谐超导性的特征

获取原文
获取原文并翻译 | 示例
       

摘要

Understanding the mechanism of high-transition-temperature (high-T-c) superconductivity is a central problem in condensed matter physics. It is often speculated that high-T-c superconductivity arises in a doped Mott insulator(1) as described by the Hubbard model(2-4). An exact solution of the Hubbard model, however, is extremely challenging owing to the strong electron-electron correlation in Mott insulators. Therefore, it is highly desirable to study a tunable Hubbard system, in which systematic investigations of the unconventional superconductivity and its evolution with the Hubbard parameters can deepen our understanding of the Hubbard model. Here we report signatures of tunable superconductivity in an ABC-trilayer graphene (TLG) and hexagonal boron nitride (hBN) moire superlattice. Unlike in 'magic angle' twisted bilayer graphene, theoretical calculations show that under a vertical displacement field, the ABC-TLG/hBN heterostructure features an isolated flat valence miniband associated with a Hubbard model on a triangular superlattice(5,6) where the bandwidth can be tuned continuously with the vertical displacement field. Upon applying such a displacement field we find experimentally that the ABC-TLG/hBN superlattice displays Mott insulating states below 20 kelvin at one-quarter and one-half fillings of the states, corresponding to one and two holes per unit cell, respectively. Upon further cooling, signatures of superconductivity ('domes') emerge below 1 kelvin for the electron-and hole-doped sides of the one-quarter-filling Mott state. The electronic behaviour in the ABC-TLG/hBN superlattice is expected to depend sensitively on the interplay between the electron-electron interaction and the miniband bandwidth. By varying the vertical displacement field, we demonstrate transitions from the candidate superconductor to Mott insulator and metallic phases. Our study shows that ABC-TLG/hBN heterostructures offer attractive model systems in which to explore rich correlated behaviour emerging in the tunable triangular Hubbard model.
机译:理解高转型温度(高T-C)超导性的机理是凝聚物物理学中的核心问题。通常推测,如霍巴德型(2-4)所述,高T-C超导率在掺杂的薄膜模型(1)中产生。然而,由于Mott绝缘体中的强电子相关相关性,哈贝德模型的精确解决方案极其具有挑战性。因此,非常希望研究可调谐的Hubbard系统,其中对非传统超导性的系统调查和其与船站参数的进化可以加深我们对船站模型的理解。在这里,我们在ABC-三层石墨烯(TLG)和六边形氮化硼(HBN)莫尔超晶格中报告可调谐超导型的特征。与“魔法角度”扭曲双层石墨烯不同,理论计算表明,在垂直位移场下,ABC-TLG / HBN异质结构具有与三角形超晶格(5,6)上的哈贝德模型相关联的隔离平板可以与垂直位移场连续调谐。在应用这种位移场时,我们发现ABC-TLG / HBN超晶格分别在季节的四分之一和半填充物的四分之一和半孔下显示20个keelvin的Mott绝缘状态。在进一步冷却时,超导性('圆顶')的签名在1个开尔文中出现了单四分之一填充型材状态的电子和空穴掺杂侧。 ABC-TLG / HBN超晶格中的电子行为预计将敏感地依赖于电子 - 电子相互作用与MINIBAND带宽之间的相互作用。通过改变垂直位移场,我们展示了从候选超导体到Mott绝缘体和金属相的转变。我们的研究表明,ABC-TLG / HBN异质结构提供有吸引力的模型系统,其中探讨可调三角形隆巴德模型中的丰富相关行为。

著录项

  • 来源
    《Nature》 |2019年第7768期|215-219|共5页
  • 作者单位

    Lawrence Berkeley Natl Lab Mat Sci Div Berkeley CA 94720 USA|Univ Calif Berkeley Dept Phys Berkeley CA 94720 USA;

    Stanford Univ Dept Appl Phys Stanford CA 94305 USA|SLAC Natl Accelerator Lab Stanford Inst Mat & Energy Sci Menlo Pk CA 94025 USA;

    Lawrence Berkeley Natl Lab Mat Sci Div Berkeley CA 94720 USA|Univ Calif Berkeley Dept Phys Berkeley CA 94720 USA;

    Stanford Univ Dept Appl Phys Stanford CA 94305 USA|SLAC Natl Accelerator Lab Stanford Inst Mat & Energy Sci Menlo Pk CA 94025 USA;

    SLAC Natl Accelerator Lab Stanford Inst Mat & Energy Sci Menlo Pk CA 94025 USA|Stanford Univ Dept Phys Stanford CA 94305 USA;

    Univ Calif Berkeley Dept Phys Berkeley CA 94720 USA;

    Shanghai Jiao Tong Univ Sch Phys & Astron Key Lab Artificial Struct & Quantum Control Minist Educ Shanghai Peoples R China|Collaborat Innovat Ctr Adv Microstruct Nanjing Jiangsu Peoples R China;

    Shanghai Jiao Tong Univ Sch Phys & Astron Key Lab Artificial Struct & Quantum Control Minist Educ Shanghai Peoples R China|Collaborat Innovat Ctr Adv Microstruct Nanjing Jiangsu Peoples R China;

    Natl Inst Mat Sci Tsukuba Ibaraki Japan;

    Natl Inst Mat Sci Tsukuba Ibaraki Japan;

    Univ Seoul Dept Phys Seoul South Korea;

    Shanghai Jiao Tong Univ Sch Phys & Astron Key Lab Artificial Struct & Quantum Control Minist Educ Shanghai Peoples R China|Collaborat Innovat Ctr Adv Microstruct Nanjing Jiangsu Peoples R China;

    SLAC Natl Accelerator Lab Stanford Inst Mat & Energy Sci Menlo Pk CA 94025 USA|Stanford Univ Dept Phys Stanford CA 94305 USA;

    Collaborat Innovat Ctr Adv Microstruct Nanjing Jiangsu Peoples R China|Fudan Univ State Key Lab Surface Phys Shanghai Peoples R China|Fudan Univ Dept Phys Shanghai Peoples R China|Fudan Univ Inst Nanoelect Devices & Quantum Comp Shanghai Peoples R China;

    Lawrence Berkeley Natl Lab Mat Sci Div Berkeley CA 94720 USA|Univ Calif Berkeley Dept Phys Berkeley CA 94720 USA|Univ Calif Berkeley Kavli Energy NanoSci Inst Berkeley CA 94720 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号