首页> 外文期刊>Nature >45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet
【24h】

45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet

机译:使用高温超导磁体产生的45.5-Tesla直流磁场

获取原文
获取原文并翻译 | 示例
       

摘要

Strong magnetic fields are required in many fields, such as medicine (magnetic resonance imaging), pharmacy (nuclear magnetic resonance), particle accelerators (such as the Large Hadron Collider) and fusion devices (for example, the International Thermonuclear Experimental Reactor, ITER), as well as for other diverse scientific and industrial uses. For almost two decades, 45 tesla has been the highest achievable direct-current (d.c.) magnetic field; however, such a field requires the use of a 31-megawatt, 33.6-tesla resistive magnet inside 11.4-tesla low-temperature superconductor coils(1), and such high-power resistive magnets are available in only a few facilities worldwide(2). By contrast, superconducting magnets are widespread owing to their low power requirements. Here we report a high-temperature superconductor coil that generates a magnetic field of 14.4 tesla inside a 31.1-tesla resistive background magnet to obtain a d.c. magnetic field of 45.5 tesla-the highest field achieved so far, to our knowledge. The magnet uses a conductor tape coated with REBCO (REBa2Cu3Ox, where RE = Y, Gd) on a 30-micrometre-thick substrate(3), making the coil highly compact and capable of operating at the very high winding current density of 1,260 amperes per square millimetre. Operation at such a current density is possible only because the magnet is wound without insulation(4), which allows rapid and safe quenching from the superconducting to the normal state(5-10). The 45.5-tesla test magnet validates predictions11 for high-field copper oxide superconductor magnets by achieving a field twice as high as those generated by low-temperature superconducting magnets.
机译:许多领域需要强磁场,例如药物(磁共振成像),药房(核磁共振),粒子促进剂(如大型强子撞机)和融合装置(例如,国际热核实验反应器,迭代)以及其他不同的科学和工业用途。近二十年来,45个特斯拉是可实现的最高直流(D.C.)磁场;然而,这种领域需要使用31兆瓦,33.6-Tesla电阻磁铁内部11.4-Tesla低温超导体线圈(1),并且这种高功率电阻磁铁仅在全球范围内仅提供(2) 。相比之下,由于其低功率要求,超导磁体很广泛。在这里,我们报告了一种高温超导体线圈,在31.1-Tesla电阻背景磁体内产生14.4特斯拉的磁场,以获得D.C。磁场为45.5特斯拉 - 到目前为止实现的最高领域,达到了我们的知识。磁铁使用在30微米厚的基板(3)上涂有REBCO(REBA2CU3OX,其中RE = Y,GD)的导体胶带,使线圈高度紧凑,能够以1,260安培的非常高的绕组电流密度操作每平方毫米。在这种电流密度下的操作是可能的,因为磁铁在没有绝缘(4)的情况下缠绕,这允许从超导到正常状态(5-10)的快速安全淬火。 45.5-Tesla测试磁体通过实现低温超导磁体产生的磁场,验证高场铜氧化物超导体磁体的预测11。

著录项

  • 来源
    《Nature》 |2019年第7762期|496-499|共4页
  • 作者单位

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA|Seoul Natl Univ Dept Elect & Comp Engn Seoul South Korea;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA|Changwon Natl Univ Dept Mech Engn Chang Won South Korea;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA|FAMU FSU Coll Engn Dept Mech Engn Tallahassee FL 32310 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA|Hokkaido Univ Grad Sch Informat Sci & Technol Sapporo Hokkaido Japan;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA;

    Florida State Univ Natl High Magnet Field Lab Tallahassee FL 32306 USA|FAMU FSU Coll Engn Dept Mech Engn Tallahassee FL 32310 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号