首页> 外文期刊>Nature >Additive manufacturing of ultrafine-grained high-strength titanium alloys
【24h】

Additive manufacturing of ultrafine-grained high-strength titanium alloys

机译:超细晶粒高强度钛合金的增材制造

获取原文
获取原文并翻译 | 示例
       

摘要

Additive manufacturing, often known as three-dimensional (3D) printing, is a process in which a part is built layer-by-layer and is a promising approach for creating components close to their final (net) shape. This process is challenging the dominance of conventional manufacturing processes for products with high complexity and low material waste(1). Titanium alloys made by additive manufacturing have been used in applications in various industries. However, the intrinsic high cooling rates and high thermal gradient of the fusion-based metal additive manufacturing process often leads to a very fine microstructure and a tendency towards almost exclusively columnar grains, particularly in titanium-based alloys(1). (Columnar grains in additively manufactured titanium components can result in anisotropic mechanical properties and are therefore undesirable(2).) Attemptsto optimize the processing parameters of additive manufacturing have shown that it is difficult to alter the conditions to promote equiaxed growth of titaniumgrains(3). In contrast with other common engineering alloys such as aluminium, there is no commercial grain refiner for titanium that is able to effectively refine the microstructure. To address this challenge, here we report on the development of titanium-copper alloys that have a high constitutional supercooling capacity as a result of partitioning of the alloying element during solidification, which can override the negative effect of a high thermal gradient in the laser-melted region during additive manufacturing. Without any special process control or additional treatment, our as-printed titanium-copper alloy specimens have a fully equiaxed fine-grained microstructure. They also display promising mechanical properties, such as high yield strength and uniform elongation, compared to conventional alloys under similar processing conditions, owing to the formation of an ultrafine eutectoid microstructure that appears as a result of exploiting the high cooling rates and multiple thermal cycles of the manufacturing process. We anticipate that this approach will be applicable to other eutectoid-forming alloy systems, and that it will have applications in the aerospace and biomedical industries.
机译:增材制造(通常称为三维(3D)打印)是一种将零件逐层构建的过程,并且是一种有前途的方法,可用于制造接近最终形状的零件。对于复杂性高,材料浪费少的产品,这一过程正在挑战传统制造工艺的主导地位(1)。通过增材制造制造的钛合金已经用于各种行业。但是,熔融基金属增材制造工艺固有的高冷却速率和高热梯度通常会导致非常精细的显微组织,并趋向于几乎只具有柱状晶粒,特别是在钛基合金中(1)。 (增材制造的钛组件中的柱状晶粒可能会导致各向异性的机械性能,因此是不希望的(2)。)尝试优化增材制造的加工参数表明,很难改变促进钛晶粒等轴生长的条件(3)。 。与其他常见的工程合金(如铝)相比,没有商用的钛晶粒细化剂能够有效地细化微观结构。为了解决这一挑战,我们在此报告了钛铜合金的发展,这种钛铜合金具有较高的组织过冷能力,这是由于凝固过程中合金元素的分配所致,它可以克服激光中高热梯度带来的负面影响。增材制造过程中熔化的区域。无需任何特殊的过程控制或其他处理,我们印刷的钛铜合金样品就具有完全等轴的细晶粒组织。与在类似加工条件下的常规合金相比,它们还显示出令人鼓舞的机械性能,例如高屈服强度和均匀的伸长率,这归因于形成超细共析微结构,这是由于利用了高冷却速率和多次热循环而形成的。制造过程。我们预计该方法将适用于其他形成共析金属的合金系统,并将在航空航天和生物医学行业中得到应用。

著录项

  • 来源
    《Nature》 |2019年第7785期|91-95|共5页
  • 作者单位

    RMIT Univ Sch Engn Ctr Addit Mfg Melbourne Vic Australia;

    RMIT Univ Sch Engn Ctr Addit Mfg Melbourne Vic Australia|Commonwealth Sci & Ind Res Org CSIRO Mfg Clayton Vic Australia;

    Ohio State Univ Dept Mat Sci & Engn Ctr Accelerated Maturat Mat 116 W 19Th Ave Columbus OH 43210 USA|Univ Nevada Dept Chem & Mat Engn Reno NV 89557 USA;

    Ohio State Univ Dept Mat Sci & Engn Ctr Accelerated Maturat Mat 116 W 19Th Ave Columbus OH 43210 USA;

    Univ Queensland Sch Mech & Min Engn St Lucia Qld Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:28:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号