首页> 美国卫生研究院文献>Materials >Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment
【2h】

Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment

机译:在生理环境中与钛合金Ti-6Al-4V相比增材制造的WE43镁合金的腐蚀和腐蚀疲劳性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Laser powder bed fusion (L-PBF) of metals enables the manufacturing of highly complex geometries which opens new application fields in the medical sector, especially with regard to personalized implants. In comparison to conventional manufacturing techniques, L-PBF causes different microstructures, and thus, new challenges arise. The main objective of this work is to investigate the influence of different manufacturing parameters of the L-PBF process on the microstructure, process-induced porosity, as well as corrosion fatigue properties of the magnesium alloy WE43 and as a reference on the titanium alloy Ti-6Al-4V. In particular, the investigated magnesium alloy WE43 showed a strong process parameter dependence in terms of porosity (size and distribution), microstructure, corrosion rates, and corrosion fatigue properties. Cyclic tests with increased test duration caused an especially high decrease in fatigue strength for magnesium alloy WE43. It can be demonstrated that, due to high process-induced surface roughness, which supports locally intensified corrosion, multiple crack initiation sites are present, which is one of the main reasons for the drastic decrease in fatigue strength.
机译:金属的激光粉末床熔合(L-PBF)能够制造高度复杂的几何形状,这为医疗领域打开了新的应用领域,尤其是在个性化植入物方面。与传统的制造技术相比,L-PBF导致不同的微观结构,因此,出现了新的挑战。这项工作的主要目的是研究L-PBF工艺的不同制造参数对镁合金WE43的组织,工艺引起的孔隙率以及腐蚀疲劳性能的影响,并作为对钛合金Ti的参考。 -6Al-4V。特别地,研究的镁合金WE43在孔隙率(尺寸和分布),微观结构,腐蚀速率和腐蚀疲劳性能方面表现出强烈的工艺参数依赖性。延长测试时间的循环测试导致镁合金WE43的疲劳强度特别高的降低。可以证明,由于高的过程引起的表面粗糙度(支持局部腐蚀),存在多个裂纹萌生部位,这是疲劳强度急剧降低的主要原因之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号