首页> 外文期刊>Nature >Exploring dynamical phase transitions with cold atoms in an optical cavity
【24h】

Exploring dynamical phase transitions with cold atoms in an optical cavity

机译:探索光学腔中冷原子的动态相变

获取原文
获取原文并翻译 | 示例
           

摘要

Interactions between light and an ensemble of strontium atoms in an optical cavity can serve as a testbed for studying dynamical phase transitions, which are currently not well understood.Interactions between atoms and light in optical cavities provide a means of investigating collective (many-body) quantum physics in controlled environments. Such ensembles of atoms in cavities have been proposed for studying collective quantum spin models, where the atomic internal levels mimic a spin degree of freedom and interact through long-range interactions tunable by changing the cavity parameters(1-4). Non-classical steady-state phases arising from the interplay between atom-light interactions and dissipation of light from the cavity have previously been investigated(5-11). These systems also offer the opportunity to study dynamical phases of matter that are precluded from existence at equilibrium but can be stabilized by driving a system out of equilibrium(12-16), as demonstrated by recent experiments(17-22). These phases can also display universal behaviours akin to standard equilibrium phase transitions(8,23,24). Here, we use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model(25,26), an iconic model in quantum magnetism, and report the observation of distinct dynamical phases of matter in this system. Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters. These observations can be linked to similar dynamical phases in related systems, including the Josephson effect in superfluid helium(27), or coupled atomic(28) and solid-state polariton(29) condensates. The system itself offers potential for generation of metrologically useful entangled states in optical transitions, which could permit quantum enhancement in state-of-the-art atomic clocks(30,31).
机译:光与光学腔中锶原子集合体之间的相互作用可以作为研究动力学相变的试验平台,目前尚不十分了解。光学腔中原子与光之间的相互作用提供了一种研究集体(多体)的方法受控环境中的量子物理学。已经提出了这样的腔体中的原子集合用于研究集体量子自旋模型,其中原子内部能级模拟自旋自由度并通过可通过更改腔体参数进行可调的远程相互作用进行相互作用(1-4)。先前已经研究了由原子-光相互作用和从腔体发出的光之间的相互作用产生的非经典稳态相(5-11)。这些系统还提供了研究物质动力学阶段的机会,这些动力学阶段被排除在平衡状态之外,但可以通过使系统脱离平衡状态而得以稳定(12-16),如最近的实验所证明的(17-22)。这些相还可以显示类似于标准平衡相变的普遍行为(8,23,24)。在这里,我们使用光腔中约一百万个锶88原子的集合来模拟集体Lipkin-Meshkov-Glick模型(25,26),这是量子磁性的标志性模型,并报告了观察到的不同动力学相的观察结果。在这个系统中很重要。我们的系统允许我们探测动态相变对系统大小,初始状态和其他参数的依赖性。这些观察结果可以与相关系统中的相似动力学相联系起来,包括超流体氦中的约瑟夫森效应(27),或原子(28)和固态极化子(29)耦合的凝聚物。该系统本身为在光学跃迁中产生在计量学上有用的纠缠态提供了潜力,这可能允许在最先进的原子钟中进行量子增强(30,31)。

著录项

  • 来源
    《Nature》 |2020年第7805期|602-607|共6页
  • 作者

  • 作者单位

    Univ Colorado NIST JILA Boulder CO 80309 USA|Univ Colorado Dept Phys Boulder CO 80309 USA|Univ Colorado Ctr Theory Quantum Matter Boulder CO 80309 USA;

    Univ Colorado NIST JILA Boulder CO 80309 USA|Univ Colorado Dept Phys Boulder CO 80309 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号