首页> 外文期刊>Nature >Measurement of the quantum geometric tensor and of the anomalous Hall drift
【24h】

Measurement of the quantum geometric tensor and of the anomalous Hall drift

机译:量子几何张量和异常霍尔漂移的测量

获取原文
获取原文并翻译 | 示例
       

摘要

Topological physics relies on the structure of the eigenstates of the Hamiltonians. The geometry of the eigenstates is encoded in the quantum geometric tensor~(1)-comprising the Berry curvature~(2)(crucial for topological matter)~(3)and the quantum metric~(4), which defines the distance between the eigenstates. Knowledge of the quantum metric is essential for understanding many phenomena, such as superfluidity in flat bands~(5), orbital magnetic susceptibility~(6,7), the exciton Lamb shift~(8)and the non-adiabatic anomalous Hall effect~(6,9). However, the quantum geometry of energy bands has not been measured. Here we report the direct measurement of both the Berry curvature and the quantum metric in a two-dimensional continuous medium-a high-finesse planar microcavity~(10)-together with the related anomalous Hall drift. The microcavity hosts strongly coupled exciton-photon modes (exciton polaritons) that are subject to photonic spin-orbit coupling~(11)from which Dirac cones emerge~(12), and to exciton Zeeman splitting, breaking time-reversal symmetry. The monopolar and half-skyrmion pseudospin textures are measured using polarization-resolved photoluminescence. The associated quantum geometry of the bands is extracted, enabling prediction of the anomalous Hall drift, which we measure independently using high-resolution spatially resolved epifluorescence. Our results unveil the intrinsic chirality of photonic modes, the cornerstone of topological photonics~(13-15). These results also experimentally validate the semiclassical description of wavepacket motion in geometrically non-trivial bands~(9,16). The use of exciton polaritons (interacting photons) opens up possibilities for future studies of quantum fluid physics in topological systems.
机译:拓扑物理学依赖于哈密顿量本征态的结构。本征态的几何结构编码在量子几何张量(1)中-包括Berry曲率(2)(对于拓扑学至关重要)(3)和量子度量(4),它定义了量子态张量之间的距离。本征态。量子度量的知识对于理解许多现象至关重要,例如平坦带中的超流体〜(5),轨道磁化率〜(6,7),激子兰姆频移〜(8)和非绝热异常霍尔效应〜 (6,9)。但是,尚未测量能带的量子几何形状。在这里,我们报告了在二维连续介质(高精细平面微腔〜(10))中贝瑞曲率和量子度量的直接测量以及相关的异常霍尔漂移。微腔具有强耦合的激子-光子模态(激子极化子),这些激子受光子自旋轨道耦合(11)的作用而产生狄拉克锥(12),并受激子塞曼分裂,破坏了时间反转对称性。使用极化分辨的光致发光来测量单极性和半Skyrmion伪自旋纹理。提取带的相关量子几何,从而能够预测异常霍尔漂移,我们可以使用高分辨率的空间分辨落射荧光独立地对其进行测量。我们的结果揭示了光子模式的内在手性,它是拓扑光子学的基石〜(13-15)。这些结果还通过实验验证了几何非平凡频带中波包运动的半经典描述[9,16]。激子极化子(相互作用的光子)的使用为拓扑系统中量子流体物理学的未来研究开辟了可能性。

著录项

  • 来源
    《Nature》 |2020年第7795期|381-385|共5页
  • 作者

  • 作者单位

    CNR NANOTEC Istituto di Nanotecnologia;

    Institut Pascal PHOTON-N2 Université Clermont Auvergne;

    PRISM (Princeton Institute for the Science and Technology of Materials) Princeton University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:22:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号