首页> 外文期刊>Nature >Observation of the Kondo screening cloud
【24h】

Observation of the Kondo screening cloud

机译:近藤筛选云的观察

获取原文
获取原文并翻译 | 示例
       

摘要

When a magnetic impurity exists in a metal, conduction electrons form a spin cloud that screens the impurity spin. This basic phenomenon is called the Kondo effect(1,2). Unlike electric-charge screening, the spin-screening cloud(3-6) occurs quantum coherently, forming spin-singlet entanglement with the impurity. Although the spins interact locally around the impurity, the Kondo cloud can theoretically spread out over several micrometres. The cloud has not so far been detected, and so its physical existence-a fundamental aspect of the Kondo effect-remains controversial(7,8). Here we present experimental evidence of a Kondo cloud extending over a length of micrometres, comparable to the theoretical length xi(K). In our device, a Kondo impurity is formed in a quantum dot(2,9-11), coupling on one side to a quasi-one-dimensional channel(12) that houses a Fabry-Perot interferometer of various gate-defined lengths L exceeding one micrometre. When we sweep a voltage on the interferometer end gate-separated by L from the quantum dot-to induce Fabry-Perot oscillations in conductance we observe oscillations in the measured Kondo temperature T-K, which is a signature of the Kondo cloud at distance L. When L is less than xi(K) the T-K oscillation amplitude becomes larger as L becomes smaller, obeying a scaling function of a single parameter L/xi(K), whereas when L is greater than xi(K) the oscillation is much weaker. Our results reveal that xi(K) is the only length parameter associated with the Kondo effect, and that the cloud lies mostly within a length of xi(K). Our experimental method offers a way of detecting the spatial distribution of exotic non-Fermi liquids formed by multiple magnetic impurities or multiple screening channels(13-16) and of studying spin-correlated systems.
机译:当金属中存在磁性杂质时,导电电子会形成自旋云,从而屏蔽杂质自旋。这个基本现象称为近藤效应(1,2)。与电荷筛选不同,自旋筛选云(3-6)量子相干地发生,与杂质形成自旋单重缠结。尽管自旋在杂质周围局部相互作用,但理论上,近藤云仍可散布数微米。到目前为止,尚未检测到云,因此其物理存在(近藤效应的基本方面)仍存在争议(7,8)。在这里,我们提供近藤云延伸超过微米长度的实验证据,可与理论长度xi(K)相提并论。在我们的设备中,近藤杂质在量子点(2,9-11)中形成,并在一侧耦合到准一维通道(12),该通道容纳了各种门定义长度L的法布里-珀罗干涉仪超过一微米。当我们在与量子点隔开L的干涉仪端门上扫描电压以诱发电导的Fabry-Perot振荡时,我们观察到所测量的近藤温度TK发生振荡,这是近距L处近藤云的特征。 L小于xi(K),随着L变小,TK振荡幅度变大,服从单个参数L / xi(K)的比例函数,而当L大于xi(K)时,振荡则弱得多。我们的结果表明,xi(K)是与近藤效应相关的唯一长度参数,并且云大部分位于xi(K)的长度内。我们的实验方法提供了一种检测由多种磁性杂质或多种筛选通道形成的异质非费米液体的空间分布的方法(13-16),以及研究自旋相关系统的方法。

著录项

  • 来源
    《Nature》 |2020年第7798期|210-213|共4页
  • 作者单位

    City Univ Hong Kong Dept Phys Kowloon Hong Kong Peoples R China;

    Korea Adv Inst Sci & Technol Dept Phys Daejeon South Korea;

    Univ Tokyo Dept Appl Phys Tokyo Japan;

    Ruhr Univ Bochum Fac Phys & Astron Chair Appl Solid State Phys Bochum Germany;

    RIKEN CEMS Saitama Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:58:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号