首页> 外文期刊>Nature >Global entangling gates on arbitrary ion qubits
【24h】

Global entangling gates on arbitrary ion qubits

机译:任意离子量子位上的全局纠缠门

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum computers can efficiently solve classically intractable problems, such as the factorization of a large number(1) and the simulation of quantum many-body systems(2,3). Universal quantum computation can be simplified by decomposing circuits into single-and two-qubit entangling gates(4), but such decomposition is not necessarily efficient. It has been suggested that polynomial or exponential speedups can be obtained with global N-qubit (N greater than two) entangling gates(5-9). Such global gates involve all-to-all connectivity, which emerges among trapped-ion qubits when using laser-driven collective motional modes(10-14), and have been implemented for a single motional mode(15,16). However, the single-mode approach is difficult to scale up because isolating single modes becomes challenging as the number of ions increases in a single crystal, and multi-mode schemes are scalable(17,18) but limited to pairwise gates(19-23). Here we propose and implement a scalable scheme for realizing global entangling gates on multiple Yb-171(+) ion qubits by coupling to multiple motional modes through modulated laser fields. Because such global gates require decoupling multiple modes and balancing all pairwise coupling strengths during the gate, we develop a system with fully independent control capability on each ion(14). To demonstrate the usefulness and flexibility of these global gates, we generate a Greenberger-Horne-Zeilinger state with up to four qubits using a single global operation. Our approach realizes global entangling gates as scalable building blocks for universal quantum computation, motivating future research in scalable global methods for quantum information processing.
机译:量子计算机可以有效地解决经典的棘手问题,例如大量的因式分解(1)和量子多体系统的仿真(2,3)。通过将电路分解成单量子比特纠缠门和两个量子纠缠门可以简化通用量子计算(4),但是这种分解不一定有效。已经提出,可以使用全局N量子位(N大于两个)纠缠门来获得多项式或指数加速(5-9)。这样的全局门涉及到所有的连通性,在使用激光驱动的集体运动模式时会出现在捕获的离子量子位之间(10-14),并且已经实现为单个运动模式(15,16)。但是,单模方法难以扩展,因为随着单晶中离子数量的增加,隔离单模变得具有挑战性,并且多模方案可扩展(17,18)但限于成对栅极(19-23) )。在这里,我们提出并实施可扩展方案,以通过调制激光场耦合到多个运动模式来实现多个Yb-171(+)离子量子位上的全局纠缠门。由于此类全局门需要解耦多种模式并在门期间平衡所有成对耦合强度,因此我们开发了一种对每个离子具有完全独立控制能力的系统(14)。为了证明这些全局门的有用性和灵活性,我们使用一个全局操作就可以生成多达四个量子位的Greenberger-Horne-Zeilinger状态。我们的方法将全局纠缠门实现为通用量子计算的可扩展构建块,从而激发了对可扩展全局方法进行量子信息处理的未来研究。

著录项

  • 来源
    《Nature》 |2019年第7769期|363-367|共5页
  • 作者单位

    Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing, Peoples R China;

    Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing, Peoples R China;

    Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing, Peoples R China|Huazhong Univ Sci & Technol, MOE Key Lab Fundamental Phys Quant Measurement, Wuhan, Hubei, Peoples R China|Huazhong Univ Sci & Technol, Hubei Key Lab Gravitat & Quantum Phys, PGMF, Wuhan, Hubei, Peoples R China|Huazhong Univ Sci & Technol, Sch Phys, Wuhan, Hubei, Peoples R China;

    Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing, Peoples R China;

    Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing, Peoples R China;

    Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing, Peoples R China;

    Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing, Peoples R China;

    Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:27:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号