首页> 外文期刊>Nature >Quantum Hall effect based on Weyl orbits in Cd_3As_2
【24h】

Quantum Hall effect based on Weyl orbits in Cd_3As_2

机译:基于Cd_3As_2中Weyl轨道的量子霍尔效应

获取原文
获取原文并翻译 | 示例
       

摘要

Discovered decades ago, the quantum Hall effect remains one of the most studied phenomena in condensed matter physics and is relevant for research areas such as topological phases, strong electron correlations and quantum computing(1-5). The quantized electron transport that is characteristic of the quantum Hall effect typically originates from chiral edge states-ballistic conducting channels that emerge when two-dimensional electron systems are subjected to large magnetic fields(2). However, whether the quantum Hall effect can be extended to higher dimensions without simply stacking two-dimensional systems is unknown. Here we report evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-like surface states) on opposite surfaces of the sample connected by one-dimensional chiral Landau levels along the magnetic field through the bulk(6,7). This transport through the bulk results in an additional contribution (compared to stacked two-dimensional systems and which depends on the sample thickness) to the quantum phase of the Weyl orbit. Consequently, chiral states can emerge even in the bulk. To measure these quantum phase shifts and search for the associated chiral modes in the bulk, we conduct transport experiments using wedge-shaped Cd3As2 nanostructures with variable thickness. We find that the quantum Hall transport is strongly modulated by the sample thickness. The dependence of the Landau levels on the magnitude and direction of the magnetic field and on the sample thickness agrees with theoretical predictions based on the modified Lifshitz-Onsager relation for the Weyl orbits. Nanostructures of topological semimetals thus provide a way of exploring quantum Hall physics in three-dimensional materials with enhanced tunability.
机译:几十年前发现的量子霍尔效应仍然是凝聚态物理学中研究最多的现象之一,与拓扑相,强电子相关性和量子计算等研究领域相关(1-5)。量子霍尔效应所特有的量子化电子传输通常源于二维电子系统受到大磁场作用时出现的手性边缘态-弹道传导通道(2)。但是,是否可以不简单地堆叠二维系统就能将量子霍尔效应扩展到更高的尺寸尚不清楚。在这里,我们报道了一种基于三维拓扑半金属Cd3As2纳米结构中的Weyl轨道的新型量子霍尔效应的证据。 Weyl轨道由样品的相对表面上的费米弧(开弧状表面态)组成,这些费米弧通过一维手征性Landau能级沿着穿过整个磁场的磁场连接(6,7)。穿过主体的这种输运给Weyl轨道的量子相带来了额外的贡献(与堆叠的二维系统相比,这取决于样品的厚度)。因此,手性状态甚至可以大量出现。为了测量这些量子相移并在整体中寻找相关的手性模式,我们使用具有可变厚度的楔形Cd3As2纳米结构进行了传输实验。我们发现,量子霍尔输运受到样品厚度的强烈调节。 Landau能级对磁场的大小和方向以及样本厚度的依赖性与基于Weyl轨道的改进的Lifshitz-Onsager关系的理论预测相符。因此,拓扑半金属的纳米结构为探索具有增强可调谐性的三维材料中的量子霍尔物理提供了一种方法。

著录项

  • 来源
    《Nature》 |2019年第7739期|331-336|共6页
  • 作者单位

    Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China|Fudan Univ, Dept Phys, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    Cornell Univ, Dept Phys, Ithaca, NY 14853 USA;

    Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China|Fudan Univ, Dept Phys, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China|Fudan Univ, Dept Phys, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    Chinese Acad Sci, High Field Magnet Lab, Anhui Prov Key Lab Condensed Matter Phys Extreme, Hefei, Anhui, Peoples R China;

    Swiss Fed Inst Technol, Mat Theory, Zurich, Switzerland;

    Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China|Fudan Univ, Dept Phys, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China|Fudan Univ, Dept Phys, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China|Fudan Univ, Dept Phys, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China|Fudan Univ, Dept Phys, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    Natl High Magnet Field Lab, Tallahassee, FL USA;

    Natl High Magnet Field Lab, Tallahassee, FL USA;

    Trinity Coll Dublin, Sch Phys, Dublin, Ireland|Trinity Coll Dublin, CRANN Inst, Dublin, Ireland;

    Chinese Acad Sci, High Field Magnet Lab, Anhui Prov Key Lab Condensed Matter Phys Extreme, Hefei, Anhui, Peoples R China;

    Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen, Peoples R China|Southern Univ Sci & Technol, Dept Phys, Shenzhen, Peoples R China|Shenzhen Key Lab Quantum Sci & Engn, Shenzhen, Peoples R China;

    Univ Texas Austin, Dept Phys, Austin, TX 78712 USA;

    Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China|Fudan Univ, Dept Phys, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China|Fudan Univ, Inst Nanoelect Devices & Quantum Comp, Shanghai, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:10:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号