首页> 外文期刊>Nature >Supervised learning with quantum-enhanced feature spaces
【24h】

Supervised learning with quantum-enhanced feature spaces

机译:具有量子增强特征空间的监督学习

获取原文
获取原文并翻译 | 示例
           

摘要

Machine learning and quantum computing are two technologies that each have the potential to alter how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous in pattern recognition, with support vector machines (SVMs) being the best known method for classification problems. However, there are limitations to the successful solution to such classification problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element in the computational speed-ups enabled by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here we propose and experimentally implement two quantum algorithms on a superconducting processor. A key component in both methods is the use of the quantum state space as feature space. The use of a quantum-enhanced feature space that is only efficiently accessible on a quantum computer provides a possible path to quantum advantage. The algorithms solve a problem of supervised learning: the construction of a classifier. One method, the quantum variational classifier, uses a variational quantum circuit(1,2) to classify the data in a way similar to the method of conventional SVMs. The other method, a quantum kernel estimator, estimates the kernel function on the quantum computer and optimizes a classical SVM. The two methods provide tools for exploring the applications of noisy intermediate-scale quantum computers(3) to machine learning.
机译:机器学习和量子计算是两种技术,每一种都有可能改变计算方式以解决以前难以解决的问题。机器学习的内核方法在模式识别中无处不在,支持向量机(SVM)是解决分类问题的最著名方法。但是,当特征空间变大并且内核函数的估计计算量变得很大时,成功解决此类分类问题就受到限制。由量子算法实现的计算加速中的核心要素是通过可控的纠缠和干涉来利用指数级大的量子状态空间。在这里,我们提出并在超导处理器上实验性地实现了两种量子算法。两种方法的关键组成部分都是将量子态空间用作特征空间。仅在量子计算机上有效访问的量子增强特征空间的使用提供了通往量子优势的可能途径。该算法解决了监督学习的问题:分类器的构造。一种方法是量子变分分类器,它使用变分量子电路(1,2)以类似于常规SVM的方法对数据进行分类。另一种方法是量子核估计器,它在量子计算机上估计核函数并优化经典的SVM。这两种方法为探索带噪的中级量子计算机(3)在机器学习中的应用提供了工具。

著录项

  • 来源
    《Nature》 |2019年第7747期|209-212|共4页
  • 作者单位

    IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA|Univ Oxford, Dept Comp Sci, Wolfson Bldg,Parks Rd, Oxford, England;

    IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA;

    IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号