首页> 外文期刊>Nature >Deep electrical imagine of the ultraslow-spreading Mohns Ridge
【24h】

Deep electrical imagine of the ultraslow-spreading Mohns Ridge

机译:超慢蔓延的Mohns Ridge的深层电气想象

获取原文
获取原文并翻译 | 示例
           

摘要

More than a third of mid-ocean ridges have a spreading rate of less than 20 millimetres a year(1). The lack of deep imaging data means that factors controlling melting and mantle upwelling(2,3), the depth to the lithosphere-asthenosphere boundary (LAB)(4,5), crustal thickness(6-9) and hydrothermal venting are not well understood for ultraslow-spreading ridges(10,11). Modern electromagnetic data have greatly improved our understanding of fast-spreading ridges(12,13), but have not been available for the ultraslow-spreading ridges. Here we present a detailed 120-kilometre-deep electromagnetic joint inversion model for the ultraslow-spreading Mohns Ridge, combining controlled source electromagnetic and magnetotelluric data. Inversion images show mantle upwelling focused along a narrow, oblique and strongly asymmetric zone coinciding with asymmetric surface uplift. Although the upwelling pattern shows several of the characteristics of a dynamic system(3,12-14), it probably reflects passive upwelling controlled by slow and asymmetric plate movements instead. Upwelling asthenosphere and melt can be traced to the inferred depth of the Mohorovicic discontinuity and are enveloped by the resistivity (100 ohm metres) contour denoted the electrical LAB (eLAB). The eLAB may represent a rheological boundary defined by a minimum melt content. We also find that neither the melt-suppression model(7) nor the inhibited-migration model(15), which explain the correlation between spreading rate and crustal thickness(6,16-19), can explain the thin crust below the ridge. A model in which crustal thickness is directly controlled by the melt-producing rock volumes created by the separating plates is more likely. Active melt emplacement into oceanic crust about three kilometres thick culminates in an inferred crustal magma chamber draped by fluid convection cells emanating at the Loki's Castle hydrothermal black smoker field. Fluid convection extends for long lateral distances, exploiting high porosity at mid-crustal levels. The magnitude and long-lived nature of such plumbing systems could promote venting at ultraslow-spreading ridges.
机译:大洋中脊的三分之一以上的扩散速度每年不到20毫米(1)。缺乏深层成像数据意味着控制融化和地幔上升流的因素(2,3),岩石圈-软流圈边界的深度(LAB)(4,5),地壳厚度(6-9)和热液排放都不好被理解为超慢扩散脊(10,11)。现代电磁数据极大地改善了我们对快速扩展脊的理解(12,13),但尚未用于超慢扩展脊。在这里,我们结合可控源电磁和大地电磁数据,为超慢扩展的莫恩斯山脊提出了详细的120公里深的电磁联合反演模型。反演图像显示,地幔上升流集中在一个狭窄,倾斜且强烈不对称的区域,与不对称的表面隆起相吻合。尽管上升流模式显示了动力系统的几个特征(3,12-14),但它可能反映了被动的上升流,它由缓慢且不对称的板块运动控制。上升流的软流圈和熔体可以追溯到Mohorovicic不连续性的推断深度,并被表示为电LAB(eLAB)的电阻率(100 ohm米)轮廓所包围。 eLAB可以代表由最小熔体含量定义的流变边界。我们还发现,解释扩展速率与地壳厚度之间关系的熔融抑制模型(7)和抑制迁移模型(15)都不能解释山脊下方的薄壳。一种模型,其中地壳厚度直接由分隔板产生的产熔岩体积控制。活跃的熔体进入约三公里厚的大洋壳中,最终到达了一个推断的地壳岩浆室内,该岩浆室内被散布在Loki城堡热液黑烟场中的流体对流单元所覆盖。流体对流延伸很长的横向距离,在中地壳水平利用了高孔隙率。这种管道系统的规模和长寿命的特性可能会促进超慢扩散脊的通风。

著录项

  • 来源
    《Nature》 |2019年第7748期|379-383|共5页
  • 作者单位

    Norwegian Univ Sci & Technol NTNU, Dept Geosci & Petr, Trondheim, Norway;

    EMGS ASA, Trondheim, Norway;

    EMGS ASA, Trondheim, Norway;

    Vestfonna Geophys AS, Trondheim, Norway;

    Norwegian Univ Sci & Technol NTNU, Dept Geosci & Petr, Trondheim, Norway;

    Norwegian Univ Sci & Technol NTNU, Dept Geosci & Petr, Trondheim, Norway;

    Norwegian Univ Sci & Technol NTNU, Dept Elect Syst, Trondheim, Norway;

    Norwegian Univ Sci & Technol NTNU, Dept Geosci & Petr, Trondheim, Norway;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号